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Background: Brain-based interventions are needed to address persistent relapse in alcohol use disorder (AUD).
Neuroimaging evidence suggests higher frontal connectivity as well as higher within-network connectivity of
theoretically defined addiction networks are associated with reduced relapse rates and extended abstinence
during follow-up periods.

Objective: /Hypothesis: A longitudinal randomized double-blind sham-controlled clinical trial investigated
whether a non-invasive neuromodulation intervention delivered during early abstinence can (i) modulate con-
nectivity of addiction networks supporting abstinence and (ii) improve relapse rates. Hypotheses: Active
transcranial direct current stimulation (tDCS) will (i) increase connectivity of addiction networks known to
support abstinence and (ii) reduce relapse rates.

Methods: Short-term abstinent AUD participants (n = 60) were assigned to 5 days of either active tDCS or sham
during cognitive training. Causal discovery analysis (CDA) examined the directional influence from left dorso-
lateral prefrontal cortex (LDLPFC, stimulation site) to addiction networks that support abstinence.

Results: Active tDCS had an effect on the average strength of CDA-determined connectivity from LDLPFC to the
incentive salience and negative emotionality addiction networks - increasing in the active tDCS group only.
Active tDCS had an effect on relapse rates following the intervention, with lower probability of relapse in the
active tDCS vs. sham. Active tDCS showed an unexpected sex-dependent effect on relapse rates.

Conclusion: Our results suggest that LDLPFC stimulation delivered during early abstinence has an effect on
addiction networks supporting abstinence and on relapse rates. The unexpected sex-dependent neuromodulation
effects need to be further examined in larger clinical trials.

1. Introduction

Alcohol use disorder (AUD) continues to directly afflict about 24
million individuals and impact the lives of many millions more. The low
success rate of current psychosocially-based (e.g. 12-step) treatment
programs (~64% relapse within a year) highlights the need for new and
effective interventions that target underlying biological factors
contributing to relapse. Non-invasive neuromodulation interventions
continue to provide promising results in AUD [1-3].

Neuroimaging research has identified targets for brain-based non-

invasive interventions. Our past resting-state fMRI studies contributed
to this literature by reporting that connectivity of left dorsolateral pre-
frontal cortex (LDLPFC) and nucleus accumbens during early abstinence
is associated with future treatment outcome with: (a) higher LDLPFC-
accumbens connectivity in long-vs. short-term abstinence or controls
[4,5]; (b) lower [6] and decreasing [7,8] LDLPFC-accumbens connec-
tivity during early abstinence as a predictor of subsequent relapse.
Moving beyond the examination of region to region connectivity, we
examined resting state functional connectivity within theoretically
defined addiction networks [9]: the incentive salience (IS), negative
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emotionality (NE), executive functioning Go (EF/Go), and executive
functioning Stop (EF/Stop) networks [10,11]. We reported that the
connectivity strength within each of these theoretically defined addic-
tion networks measured during early abstinence was associated with
subsequent relapse outcomes, while connectivity within a sensory pro-
cessing -primary visual-network was not [9]. The addiction network that
showed the strongest effect was the IS: higher within-network connec-
tivity in IS during early abstinence decreased the odds of relapse in the
subsequent month [9].

The above neuroimaging data indicates that early abstinence is a
critical period during which enhanced connectivity of frontal and
addiction networks serves as a protective factor to support subsequent
abstinence. Based on this evidence, non-invasive neuromodulation in-
terventions that support abstinence maintenance need to be designed to
increase frontal and addiction network connections and delivered dur-
ing critically vulnerable stages of recovery such as early abstinence.

Effect of DLPFC stimulation on treatment outcome in substance
use disorder. Preclinical [12,13] and clinical [2,3,14] studies suggest
DLPFC stimulation is a promising intervention target for neuro-
modulation trials in substance use disorder. While most studies report
reduced AUD symptomatology following tDCS intervention [1], incon-
sistent findings still remain. For example, there are reports of (a) no
additive tDCS effects of tDCS on self-reported craving after
mindfulness-based relapse prevention therapy [15] and (b) no tDCS
effects on the amount of alcohol consumption in risk-drinkers under-
going cognitive bias modification [16]. Inconsistent findings could be
related to infrequent spacing of intervention sessions [15], studying an
at-risk population rather than individuals with chronic alcohol use with
diagnosed AUD [16], or administering tDCS with concurrent tasks not
designed to enhance executive functioning [15,16]. The present study
administered five consecutive days of DLPFC stimulation sessions on
short-term abstinent individuals diagnosed with AUD using a combi-
nation of tDCS and concurrent cognitive training.

Effect of DLPFC stimulation on connectivity. Growing evidence
from studies combining non-invasive neuromodulation and neuro-
imaging techniques report increases in connectivity following DLPFC
stimulation [17-22]. For example, a study on abstinent individuals with
methamphetamine use disorder, reported that connectivity within the
executive functioning and incentive salience networks increased
following one tDCS session targeting DLPFC [23]. Another study on
individuals with AUD reported an increase in global efficiency and a
significant reduction in global clustering following five tDCS sessions
targeting DLPFC [2]. The current study adds to the literature by (i)
examining the effect of DLPFC stimulation on specific theoretically
defined addiction networks [9-11], and (ii) investigating the directional
influence of DLPFC stimulation on theoretically defined addiction net-
works known to support abstinence.

From resting state functional connectivity (RSFC) to resting
state causal connectivity. Our past studies have identified RSFC-based
markers of abstinence and relapse. RSFC, however, is limited because it
lacks information on the directionality of identified significant correla-
tions. The present study sought to go beyond the non-directional cor-
relations of RSFC and conduct analyses that allows us to determine the
causal or directed influence of DLPFC stimulation on addiction networks
known to support abstinence by applying causal discovery analysis
(CDA) on our rest fMRI data.

CDA is a powerful data-driven methodology that allows the deter-
mination of the directed influence (i.e. the causal connectivity) between
variables of interest. A recent large-scale AUD study [24] used CDA to
determine the direct causal influence between neural networks,
phenotypic domains, and AUD symptom severity. In that study, Rawls
et al. (2021) identified a learned causal model in which the strength of a
prefrontally mediated executive functioning resting network had the
most directional influence on AUD symptom severity. A following paper
by the same group [25] focused on using CDA to determine whole-brain
causal connectomes from rest fMRI data determining edges or
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connections between regions and edge orientation [26,27]. The current
study used CDA [25] to determine whether the causal connectivity from
left dorsolateral prefrontal cortex (LDLPFC below the F3 tDCS anode
[28]) to the theoretically defined addiction networks known to support
abstinence [9] changes following our neuromodulation intervention.

The present study adds evidence to neuromodulation clinical trials in
AUD by: (a) Collecting pre- and post-tDCS resting fMRI data to examine
underlying brain connectivity changes, (b) Merging the use of tDCS
paired with cognitive training to control participants’ effort and
engagement during the stimulation session; (c) Using CDA to determine
the causal connectivity from the stimulation site (LDLPFC) to previously
defined addiction networks known to support abstinence [9,10], and (d)
Tracking relapse outcome over a 4-month follow-up period, longer than
follow-up periods in previous clinical trials [3,29].

2. Materials and methods
2.1. Participants

A total of 81 participants with AUD were consented (Inclusion/
Exclusion criteria in Supplementary Material A). All participants were
recruited during early abstinence, 1-2 weeks after being admitted to a
28-day inpatient addiction treatment program in Minneapolis, MN
(number of days abstinent until baseline MRI session M = 24.33, SD =
16.47). All participants provided written informed consent and received
monetary compensation for participating. The consent process and all
procedures were approved by the University of Minnesota Institutional
Review Board.

From the 81 participants, 21 did not have complete fMRI (functional
magnetic resonance imaging) data because: 10 left the treatment pro-
gram and were no longer reachable (9 after their pre-intervention
neuroimaging session, 1 after the first tDCS session); 4 were found to
be no longer eligible (1 because of identified cognitive impairment, 2
because the identified primary substance use disorder diagnosis was not
alcohol, but stimulant and heroin and 1 because of identified unknown
metal in their bodies), 3 voluntarily withdrew participation before the
initial tDCS session, 3 were excluded from group analyses because their
fMRI data was flagged as having excessive noise (Supplementary Ma-
terial B, Individual resting state data quality assessment - Motion and

Table 1
Demographics and history of alcohol use in participants who had complete fMRI
data.

Characteristic Intervention Group
All AUD (n Active tDCS Sham (n = Active
= 60) (n=31) 29) tDCS vs.
Sham
Mean or n Mean or n Mean or n T-test or
(SD or %) (SD or %) (SD or %) Chi?
(italics)
Age 41.65 39.84 43.59 p=0.13
(9.60) (9.97) (8.99)
Years of Education 14.32 14.72 13.89 p=0.12
(1.98) (2.10) (1.78)
Female, n (%) 21 (35.0%) 11 (52.4%) 10 (47.6%) p=0.94
Age of AUD onset 28.10 26.80 29.54 p=0.28
(9.52) (7.23) (11.52)
# of standard drinks: 2642.00 2714.03 2569.97 p =0.823
Past 6- months (2192.62) (1949.76) (2451.90)
# of drinking days: 100.11 101.26 98.96 p =0.898
Past 6- months (61.40) (60.48) (63.59)
# of days abstinent 24.33 25.08 23.58 p=0.756
until the baseline (16.47) (15.93) (17.30)

MRI session

AUD, Alcohol Use Disorder; MRI, Magnetic Resonance Imaging; SD, Standard
Deviation; tDCS, transcranial direct current stimulation. Chi2, Chi-Square; p,
significance probability value.
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artifacts), 1 because of scanner hardware issues during scan. As a result,
pre- and post-intervention fMRI data was available for 60 participants
(Table 1). Timeline Follow-Back (TLFB) [30] recorded alcohol/drug use
history for the past 6 months before entering the treatment program
(Tables 1 and 2).

2.2. Intervention

Transcranial Direct Current Stimulation (tDCS). tDCS was performed
with the StarStim wireless neurostimulator system (Neuroelectrics, Inc.,
Barcelona, Spain). Direct current was induced by two circular rubber
carbon core electrodes in saline-soaked surface sponges (25 cm?), placed
in a neoprene headcap with marked locations based on the 10-20 EEG
system [28]. The anodal electrode was at F3 and the cathodal electrode
was at F4. Intervention sessions took place twice per day (13 min
duration each, separated by 20 min) on five consecutive days [31,32].
For active stimulation, participants received a constant current of 2 mA
intensity for 13 min (30 s ramp up/down). For sham stimulation, current
was ramped down (30 s) immediately after the initial ramp up period,
and then ramped up (30 s) right before the final ramp down portion of
the session. Participants completed a questionnaire before and after
each tDCS day reporting the presence and severity of potential side
effects.’

Cognitive task completed during tDCS. Preclinical and clinical litera-
ture suggests that chronic substance use is associated with poor cogni-
tive flexibility as measured by the reversal learning set-shifting task
[33-36]. We administered the 4-choice reversal learning task [37]
(Supplementary Material E) concurrently with each tDCS. Task admin-
istration started after the 30 s tDCS ramp up.

2.3. Relapse metrics

All participants were abstinent at the pre- and post-intervention MRI
and neuromodulation sessions because these were completed in the
addiction treatment program. Participants underwent random alcohol/
drug tests in the treatment program. After participants were discharged
from the addiction treatment program they completed in-person in-
terviews at the 1- and 4-month follow-up timepoints. Participants were

Table 2
Counts of lifetime and current substance use disorder for all participants with
alcohol use disorder.

Substance Lifetime Diagnosis Count Current Diagnoses Count
Active Sham Chi®  Active Sham Chi?
tDCS (n (n= Sig. tDCS (n (n= Sig.
=31) 29) =31 29)

Marihuana 12 13 p= 7 5 p=

0.58 0.53
Cocaine 5 4 p= 0 0
0.59

Methamphetamine 4 4 p= 0 0 -
0.62

Opioids 1 2 p= 0 0 -
0.51

Hallucinogens 2 4 p= 0 0 -
0.41

Nicotine 17 18 p= 17 16 p=
0.67 0.91

tDCS, transcranial direct current stimulation; Chi?, Chi-Square; p, significance
(Sig.) probability value.

! Ppotential side effects included headache, neck pain, scalp pain, tingling,
itching, burning sensation, skin redness, sleepiness/fatigue, poor concentration,
acute mood change, and nausea. Severity was rated on a scale: 0 (absent), 1
(mild), 2 (moderate), 3 (severe).
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in the relapsing group if they reported consuming at least one drink.
Participants who had not consumed any alcohol/drug were considered
to be in the abstaining group. One- and 4-month relapse outcomes were
defined as separate outcome variables to be able to examine potential
durability intervention effects.

2.4. Brain imaging metrics

Brain imaging data acquisition, quality assessment, preprocessing
and individual level analyses are in Supplementary Material B.

2.5. Group analyses to determine intervention effects

To determine intervention effects on causal connectivity, a 2
(Intervention group: Active tDCS vs. sham) x 2 (Timepoint: pre-vs. post-
intervention fMRI) general linear model correcting for baseline was
conducted with causal connectivity (standardized r score) between
LDLPFC (CDA source) and each addiction network (CDA destinations,
Table 3, Supplementary Material C, D) as the dependent variable.

To determine whether causal connectivity changes were different
depending on relapse outcome, a 2 (Outcome: Relapsed vs. Abstained) x
2 (Timepoint: pre-vs. post-intervention fMRI) general linear model
correcting for baseline was conducted with causal connectivity (stan-
dardized r score) between LDLPFC and each addiction network as the
dependent variable.

To determine the intervention effects on relapse outcome, a Pearson
Chi square test was conducted with relapse outcome (relapsed vs.
abstained) as the dependent variable and intervention (active tDCS vs.

Table 3
Bilateral brain regions within each Addiction Domain.

Regions in Each Addiction Domain (Koob & Volkow 2016; Kwako

et al., 2018)
IS NE EF/Go EF/Stop
Consumption Consumption Consumption Consumption
driven to driven to driven by driven by
experience avoid habit-induced  poor
reward withdrawal craving inhibitory and
and negative affective
emotions control
Subcortical Amygdala Amygdala
Caudate Caudate Caudate
Diencephalon
Nucleus Nucleus Nucleus
Accumbens Accumbens Accumbens
Pallidum Pallidum Pallidum
Putamen Putamen Putamen
Cortical Motor cortex”
Anterior Anterior
Cingulate Cingulate
Cortex Cortex
Dorsolateral
Prefrontal
Cortex
Inferior Inferior
Frontal Frontal
Cortex Cortex
Insula”
Medial Medial
Prefrontal Prefrontal
Cortex Cortex
Orbitopolar
Frontal
Cortex

IS, incentive salience; NE, negative emotionality; EF/Go, executive functioning
go; EF/Stop, executive functioning stop.

@ Including: Inferior and superior premotor, pre-motor, somatosensory, sup-
plementary motor.

b Including: Anterior agranular insular complex, frontal opercular, insula
granular, middle insula, posterior insula, posterior opercular.
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sham) as the independent variable.

To determine whether the change in causal connectivity as a result of
the intervention is associated with relapse outcome, a logistic regression
was conducted with relapse outcome as the dependent variable, inter-
vention type as the between-groups factor, and change in causal con-
nectivity from LDLPFC to each addiction network as a covariate.

3. Results

Demographic, clinical and behavioral comparison between groups. There
were no significant differences in age, education, number of women, age
of AUD onset, AUD severity in the past six months, or length of absti-
nence before the baseline MRI session between intervention groups
(Active tDCS vs. Sham) (Table 1). There were no significant group dif-
ferences in psychiatric diagnoses (Table 4), changes in self-reported
depression/anxiety (Supplementary Material G), medications (Supple-
mentary Material H) or reversal learning performance changes
(Table 5).

Relapse outcome. 17 participants relapsed (days to relapse since post-
intervention MRI session: M = 15.36, SD = 10.49) and 43 participants
remained abstinent by 1-month. By the 4-month follow-up timepoint 4
participants were not reachable anymore. 25 participants relapsed and
31 remained abstinent by the 4-month timepoint (days to relapse M =
44.2, SD 42.42). Because Cox-proportional hazards regression
revealed that women had higher likelihood of relapse than men (Sup-
plementary Material F), analyses investigating intervention effects on
relapse corrected for sex as a biological variable.

Intervention increased causal connectivity from LDLPFC to specific
addiction networks. Analysis of variance (ANOVA) with change in
average strength of connectivity as a dependent variable and Group as
the independent variable correcting for baseline and sex revealed a
significant Group (Active tDCS vs. Sham) x Time interaction in the
average strength of connectivity from LDLPFC to the IS (LDLPFC-IS,
Fig. 1a) and NE (LDLPFC-NE, Fig. 1b) networks. There was an increase in
LDLPFC-IS (Fig. 2a) and LDLPFC-NE (Fig. 2b) causal connectivity in the
active tDCS group and a decrease in the sham group. No significant
intervention effect was found on LDLPFC-EF/Go or LDLPFC-EF/Stop
causal connectivity. There were no significant causal connectivity

Table 4
Counts of lifetime and current psychiatric diagnoses by intervention group.

Psychiatric Lifetime Diagnosis Count (%) Current” Diagnoses Count (%)
R b
Diagnoses Active Sham Chi® Active Sham Chi®
tDCS (n (n= Sig. tDCS (n (n= Sig.
=31) 29) =31) 29)
MDD 13 14 p= 13 13 p=
0.62 0.81
GAD 14 9 p= 11 9 p=
0.26 0.72
PTSD 8 11 p= 9 10 p=
0.31 0.75
Social phobia 8 7 p= 7 7 p=
0.89 0.89
PD 6 7 p= 3 4 p=
0.65 0.62
Agoraphobia 3 3 p= 2 3 p=
0.93 0.59
ADHD 3 1 p= 3 1 p=
0.33 0.33

tDCS, transcranial direct current stimulation; Chi®, Chi-Square; MDD, major
depressive disorder; GAD, generalized anxiety disorder; PTSD, post-traumatic
stress disorder; PD, panic disorder; ADHD, Attention deficit hyperactivity; p,
significance (Sig.) probability value.

@ Participants with current diagnoses were clinically stable.

b No lifetime or current diagnoses for the following disorders in the current
sample: Dysthimia, Hypomania, Bipolar disorder (without psychosis episodes),
Obsessive compulsive disorder, Antisocial personality disorder, Conduct
disorder.
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Table 5
Reversal Learning task performance change (post-intervention minus pre-
intervention).

Performance change All AUD (n Active tDCS Sham (n =  Sig.
= 60) (n=31) 29)

Mean reversal trial —0.45 —0.48 —0.42 p=

response time 0.79

Number of Reversals 3.38 2.19 4.45 pP=

0.12

AUD, Alcohol Use Disorder; tDCS, transcranial direct current stimulation; p,
significance (Sig.) probability value.

group differences at baseline (Supplementary Material I).

Causal connectivity change predicted 4-month relapse status. Logistic
regression with binary relapse outcome as the dependent variable and
change in LDLPFC-IS causal connectivity as the predictor, showed that
LDLPFC-IS causal connectivity change was associated with a statistically
significant increase in the odds of remaining abstinent during the 4-
month follow-up period (Odds Ratio = 2.896; p = 0.035; after correct-
ing for baseline and sex: Odds Ratio = 1.245; p = 0.060). A general
linear model analysis correcting for sex and baseline showed a Group
(Abstainers vs. Relapsers) x Time interaction effect on LDLPFC-IS
(Fig. 3) causal connectivity strength. An ANOVA with Group (Ab-
stainers vs. Relapsers at the 4-month follow-up period) as the indepen-
dent variable and causal connectivity change as a dependent variable
-correcting for sex and baseline-resulted in a significant group difference
in the LDLPFC-IS (Fig. 4) networks. The effect was characterized by
increased connectivity in the Abstainers’ group and a decrease in the
Relapsers’ group. There were no significant findings in the NE, EF/Go or
EF/Stop networks.

While change in causal connectivity predicted relapse status, base-
line causal connectivity did not. Binary logistic regressions with relapse
status both at 1- and 4-month follow-up as dependent variables and
causal connectivity at baseline as predictors were not significant (p >
0.05). Linear regressions with time to relapse and length of abstinence as
dependent variables and causal connectivity at baseline as predictors
showed no significant results (p > 0.05). Baseline causal connectivity or
causal connectivity change from pre-to post-intervention timepoints was
not significantly associated with history of alcohol use variables
(Table 1). There were no significant causal connectivity differences at
baseline between abstainers and relapsers (Supplementary Material J).

Intervention effects on relapse outcomes. Pearson Chi square revealed
that the probability of relapsing in the active tDCS group (19%; n = 31)
was cut by half when compared to the sham group (38%; n = 29)
(Fig. 5). Because relapse rates were different between men and women
(Supplementary Material F), we conducted the same analyses splitting
the sample by sex. There was a significant intervention effect on relapse
rates in women (Fig. 6a), so that the probability of relapsing in women
who received active tDCS (9.1%; n = 11) was cut by a factor of 5 when
compared to women who received sham (50%; n = 10). Men (n = 39)
did not show a significant effect (Fig. 6b).

tDCS Side Effects Questionnaire. Average ratings on the questionnaire
were <1 (mild) for all symptoms at each timepoint. There were no
significant changes from pre-to post-tDCS session, and there were no
differences between active tDCS and sham groups for any symptom.

4. Discussion

The present study was designed to address the critical need for brain-
based interventions that reduce relapse in alcohol use disorder (AUD).
We investigated whether a non-invasive neuromodulation intervention
combining transcranial direct current stimulation (tDCS) and cognitive
training had an effect both on brain networks known to support absti-
nence and on subsequent relapse rates. While previous studies have
reported tDCS effects on brain functional connectivity or clinical out-
comes in AUD separately, the present study adds to the literature by
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Fig. 1. Intervention effects on causal connectivity
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reader is referred to the Web version of this article.)
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lapsers in red) in which those who maintained abstinence over the 4-month
follow-up period (Abstainers - blue bar) showed an average increase in causal
connectivity strength from LDLPFC to the incentive salience (F(1,57) = 5.056,
p = 0.029)). Those randomly assigned to the sham group showed a decrease in
LDLPFC-IS causal connectivity. Causal connectivity from LDLPFC to the other
addiction networks (NE, EF/Go and EF/Stop) showed a similar pattern, but not
significant. Error bars: +1 standard error. LDLPFC, left dorsolateral prefrontal
cortex; IS, incentive salience. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

providing important converging evidence under one clinical trial. Our
results showed that the change in average strength of causal connec-
tivity (specifically from LDLPFC to IS) as a result of active tDCS explains
subsequent relapse outcome. The present study further adds to the
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Fig. 5. Intervention effects on relapse rates. The probability of relapse in
those randomly assigned to receive active tDCS (n = 31) was cut by half (19%
probability) when compared to those randomly assigned to receive sham (n =
29; 38% probability) (Pearson Chi Square = 2.55; p = 0.11; Phi effect size
= 0.21).

literature (i) by using recently developed analysis methodologies -causal
connectivity analysis-to determine the directional influence of identified
connections and (ii) by providing evidence of potential sex-dependent
intervention effects on relapse rates.

4.1. tDCS induced causal connectivity changes

Current findings provide two important pieces of evidence regarding
tDCS effects on brain connectivity changes. First, our results show that
the tDCS intervention increased the strength of connections from the
area below the tDCS anode (LDLPFC) to addiction networks that we
previously found to support abstinence [9]. The biochemical mecha-
nisms underlying DLPFC stimulation using tDCS have been previously
demonstrated using positron emission tomography (PET) imaging, with
important evidence that tDCS on DLPFC induces neurotransmitter
release in subcortical areas, that is, increased extracellular dopamine of
the striatum [38]. Neuroimaging data collected before and after the
intervention allowed us to identify causal connections being modulated
with tDCS. Present findings extend a previous report of tDCS’s effects on
global efficiency in AUD [2] by narrowing down the findings of specific
tDCS modulation on the direct influence from LDLPFC to theoretically

Women

ABS
n=10

Active tDCS Sham
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defined addiction networks known to support abstinence [9]. Our results
showed that active tDCS specifically enhanced the average strength of
connections from LDLPFC to the IS and NE addiction networks (Figs. 1
and 2). That is, the average strength of LDLPFC-IS and LDLPFC-NE
causal connectivity increased from pre-to post-intervention only for
those that received active tDCS, and decreased for those who received
sham.

Causal connectivity reductions observed in the sham group (Figs. 1
and 2) are intriguing. First, these reductions could denote a normal
declining progression of connectivity decay in those that do not undergo
active tDCS, as found in another AUD tDCS study (Fig. 2 in Ref. [2]).
Frontal-striatal connectivity reduction has been recently reported in
individuals with AUD as a characteristic progression of the disorder
[39]. Our current findings show this connectivity reduction is particu-
larly evident in those that subsequently relapsed (Fig. 3), a finding that
is in line with a previous longitudinal study in which we reported that
connectivity reduction during early abstinence was a marker of subse-
quent relapse [7]. To further explore this premise, we conducted ana-
lyses to determine the association between causal connectivity changes
and length of abstinence. We found that causal connectivity changes
were significantly positively correlated with length of abstinence over
the 4-month follow-up (LDLPFC to EF/Go: Spearman rho = 0.323, p =
0.015; LDLPFC to EF/Stop: Spearman rho = 0.335; p = 0.012). That is,
LDLPFC-EF/Go and LDLPFC-EF/Stop causal connectivity decrease was
associated with shorter time to relapse over the 4-month follow-up
period. These findings, together with the literature reporting that
reduced connectivity is a marker for relapse in addiction (e.g. Refs. [6,9,
40-43]), suggest that the observed causal connectivity reduction (from
LDLPFC to IS and NE) in the sham group may be characteristic of the
addiction cycle, particularly for those that are more likely to relapse.
Second, to further examine whether the observed causal connectivity
reductions in the sham group is a generalized reduction in connectivity,
we conducted the same CDA analysis (as described in Supplementary
Material B), reversing the direction. That is, we examined causal con-
nectivity (i) from IS to LDLPFC and (ii) from NE to LDLPFC. There was
no group x time interaction in causal connectivity changes in the
reverse direction (Fig. 7). The causal influence from addiction networks
(both IS and NE) to LDLPFC increased for both active tDCS and sham
groups. This time-dependent increase of bottom-up signaling
(IS-LDLPFC and NE—LDLPFC) during abstinence could represent a
concept known as “incubation” in preclinical and clinical addiction
research [44-47]. During incubation, bottom-up signaling progressively
increases during abstinence, driving increases in cue-induced craving,
and increased risk of subsequent relapse [46,47]. On the other hand, we
found that the causal influence from LDLPFC to addiction networks (IS
and NE) does change differentially across intervention groups (Figs. 1
and 2). The specific increase in LDLPFC—IS causal connectivity for those

Men
ABS
n=15

ABS

15

10

Active tDCS Sham

Fig. 6. Intervention Effects on Relapse Outcomes by Sex as a Biological Variable. Pearson Chi square analysis with the sample split by sex as a biological
variable. (a) Women showed significant intervention effects on relapse rates (Pearson Chi Square = 4.30; p = 0.038; Phi effect size = 0.452), while (b) men did not

(Pearson Chi Square = 0.21; p = 0.648; Phi effect size = 0.073).
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Fig. 7. Reversing causal connectivity analysis
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assigned to receive tDCS on LDLPFC (Figs. 1 and 2), potentially facili-
tates LDLPFC influence (executive control) on bottom-up signaling and
may underlie the ability to remain abstinent (Figs. 3 and 4). Conversely,
since those assigned to receive sham did not undergo LDLPFC stimula-
tion, DLPFC’s causal influence on bottom-up signaling decreased over
time, a pattern found in those that subsequently relapsed (Figs. 3 and 4).
This interpretation is in line with the literature suggesting excessive
bottom-up and reduced top-down signaling in substance use disorders
(e.g. Refs. [48-50]). While these hypotheses are derived from our results
and existing literature, they need to be further investigated.

The second key finding regarding tDCS effects is that the montage of
F3 anode and F4 cathode specifically increased the causal connectivity
strength from LDLPFC to the IS and NE addiction networks. Because we
did not find significant intervention effects when exploring right DLPFC
(Supplementary Material K) or primary visual cortex (Supplementary
Material L) as sources in the causal connectivity analysis, our inter-
vention seems to be specific to inducing changes on the causal connec-
tivity from the location of the tDCS anode (LDLPFC) to these two specific
addiction networks (IS and NE). These results are promising evidence of
the modulatory effects of non-invasive neuromodulation, specifically
from an executive control cortical region (LDLPFC) to theoretically
defined addiction networks, which the literature has suggested to play a
role in regulating reward processing and negative emotion [10,51-54].

4.2. tDCS effects on clinical measures in addiction

The present study extends our most recent cross-sectional neuro-
imaging findings [9] which reported that higher connectivity within
these theoretically defined addiction networks measured during early
abstinence was associated with reduced relapse rates and longer periods
of abstinence. Our CDA analysis showed that the specific increase in
LDLPFC-IS causal connectivity after 5 days of active tDCS was associated
with increased odds of maintaining abstinence. The specificity of the
causal connectivity from LDLPFC to the IS addiction network is consis-
tent with our previous report [9] in which IS connectivity had the largest
predictive power of subsequent relapse and time to relapse in AUD. In
Koob and Volkow’s formulation, brain regions listed as part of the
incentive salience network play a role in the acquisition of conditioned
cues acquired after chronic alcohol use [10,11,54]. Conditioned cues
-associated with reward-become salient, and drive dopamine signaling
[55,56] triggering strong motivation to seek a reward (e.g. alcohol) [10,
54,57]. The premise that enhanced frontally mediated top-down control
(LDLPFC) on incentive salience is crucial to support successful recovery
[5,6,58] is supported by our recent [9] and current findings.

Our findings extend existing converging reports of promising effects
of frontal stimulation in reducing relapse [1,3,12,14]. Previous studies
have reported tDCS effects on relapse outcomes over various lengths of
follow-up periods, such as over a 2-week [3] or 5-week follow-up period
[14]. We are the first tDCS study that reported intervention effects over a
4-month follow-up period. New clinical trials designed to examine the

Rest fMRI Session
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durability of tDCS intervention in AUD need to be conducted with longer
follow-up periods.

4.3. Considerations

Future trials designed to specifically address the following issues
need to be conducted. First, while the statistical model comparing
relapse rates between groups (active-tDCS vs. sham) showed a moderate
effect in the whole sample (Fig. 5), this effect seemed to be driven by
women (Fig. 6). Existing literature suggests that sex-dependent differ-
ences may be due to inherent anatomical differences mediating tDCS-
induced neuroplasticity [59,60]. To determine if sex-dependent effects
were due to potential sex differences in the magnitude of delivered
electric field, we calculated the electric field delivered to LDLPFC, and
found no differences between men and women (Supplementary Material
M). Second, while this manuscript focused on causal connectivity from
LDLPEC to addiction networks, our findings of no significant interven-
tion effects on causal connectivity from other sources (right DLPFC
Supplementary Material K or primary visual cortex Supplementary
Material L) provide additional evidence of the intervention’s specificity.
Furthermore, we found that the effect is specific only to the causal
connectivity direction from LDLPFC to IS and NE networks, because it
was not found when examining the causal connectivity in the reverse
direction (Fig. 7). Third, our results suggest that cognitive training alone
(sham condition) was not sufficient to induce effects on causal connec-
tivity change or treatment outcome. There is evidence that highest
intervention effects on relapse rates are reached when combining a task
requiring inhibitory control (i.e. Go/No-Go task) with active tDCS [3].
Growing evidence suggests that tDCS effects are maximized if delivered
concurrently with (i) a variety of cognitive training tasks demanding
engagement of different executive function domains (e.g. cognitive
flexibility, inhibition, working memory, decision making) and (ii) tasks
that continually challenge the participant’s individual ability. Fourth,
the current study was not conducted to empirically define the addiction
networks. The criterion used here and previously [9] to define the pu-
tative addiction networks derived from the theoretical model of addic-
tion [10,11,54] has not been empirically tested using rest fMRI in
individuals with alcohol use disorder yet. This is an important topic for
future large-scale studies. Finally, our strict criteria to define relapse (a
single drink during follow-up period) was used to be consistent with our
previous work (Camchong et al., 2013b, 2014, 2017, 2021) and to avoid
heterogeneity across participant’s relapse/abstinence cycles. While this
criteria may be more stringent than what has been defined in other
alcohol treatment outcome studies, we recorded a 72% and 55% rate of
abstinence at the 1- and 4-month follow-up timepoints respectively.

5. Conclusion

Results from our longitudinal double-blind randomized clinical trial
suggest that 5 days of LDLPFC stimulation delivered during early
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abstinence (i) increased the causal connectivity from LDLPFC to addic-
tion networks supporting abstinence -incentive salience and negative
emotionality networks- and (ii) increased the odds of maintaining
abstinence in individuals with AUD. More specifically, an increase in
LDLPFC-IS connectivity after active stimulation was associated with
increased odds of abstinence maintenance. The unexpected sex-
dependent neuromodulation effects need to be further examined in
larger clinical trials.
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