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Abstract

P3 amplitude reduction (P3-AR) is associated with biological vulnerability to a spectrum of externalizing disorders,
such as ADHD, conduct disorder, and substance use disorders. P3, however, is generally characterized as a broad
activation involving multiple neurophysiological processes. One approach to separating P3-related processes is time-
frequency (TF) analysis. The current study used a novel PCA-based TF analysis method to investigate relationships
between P3, its associated TF components, and externalizing in a community-based sample of adolescent males.
Results showed that 1) alone, P3 and each TF-PCA derived component could successfully discriminate diagnostic
groups from controls, and 2) delta components in specific time ranges accounted for variance beyond that accounted
for by P3. One delta component was associated with all diagnostic groups, suggesting it may represent a more

parsimonious endophenotype for externalizing than P3-AR.

Descriptors: P3, Externalizing, Substance use disorder, ADHD, Conduct disorder, Oppositional defiant disorder,
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Reduced amplitude of the P3 event-related potential (ERP) has
long been associated with alcoholism and familial risk of devel-
oping alcoholism (Begleiter, Porjesz, Bihari, & Kissin, 1984; Hill,
2004; Polich, Pollock, & Bloom, 1994). This association between
P3 amplitude reduction (P3-AR) and alcoholism, however, has
recently been extended to encompass a spectrum of disorders
characterized by behavioral disinhibition. In addition to alco-
holism, this disinhibition spectrum includes disorders such as
conduct disorder, attention-deficit/hyperactivity disorder, oppo-
sitional defiant disorder, and substance use disorders (Bauer &
Hesselbrock, 2003; Iacono, Carlson, Malone, & McGue, 2002;
Justus, Finn, & Steinmetz, 2001). Large-scale epidemiological
studies with twins have shown that the common comorbidity
among these disorders can be accounted for by an underlying
“externalizing” factor that is highly heritable (Kendler, Prescott,
Myers, & Neale, 2003; Krueger et al., 2002; Young, Stallings,
Corley, Krauter, & Hewitt, 2000). Recently, P3-AR was shown
to be associated with this externalizing factor (Patrick et al.,
2006), and this association is accounted for by shared genetic
effects (Hicks et al., 2007). These findings support the hypothesis
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that P3-AR is an endophenotype for general vulnerability to the
spectrum of externalizing disorders, rather than for any one dis-
order specifically.

With regard to psychological disorders, an endophenotype is
a measurable trait intermediate between the clinical manifesta-
tion of the disorder and the genes underlying the disorder (Got-
tesman & Gould, 2003). The endophenotype, then, is putatively
a less complex correlate of the disorder that is closer to gene
action, and that can aid in discovering the disorder’s genetic
etiology. While P3-AR has been associated with a general vul-
nerability to externalizing, its utility as an endophenotype has
only been tested with regard to alcohol use disorders. Visual P3
amplitude itself has shown significant linkage on chromosomes 2,
5,6, 13, and 17 (Begleiter et al., 1998; Porjesz et al., 2002, 2005),
and an association between P3 amplitude and the dopamine re-
ceptor Al allele has been found (Hill et al., 1998). With respect to
alcohol use, there is evidence that particular genetic loci affecting
P3 amplitude also influence risk of alcohol dependence. Williams
et al. (1999) found that reduced P3 amplitude and an alcoholism
diagnosis were jointly linked to a region on chromosome 4 near
the alcohol dehydrogenase gene (ADH3), and Hill et al. (1998)
found an association between lower P3 amplitude and presence
of the A1 allele in children from alcoholic families.

While these studies have demonstrated P3-AR’s potential as
an endophenotype for alcoholism, there has long been evidence
that multiple processes comprise the P3 (e.g., Dien, Spencer, &
Donchin, 2003; Mantini, Corbetta, Perrucci, Romani, & Del
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Gratta, 2009), suggesting that conventional P3 measures (e.g.,
peak amplitude) may not be an optimal representation of the
processes involved in P3-AR. An emerging approach to this
problem is time-frequency (TF) decomposition, which has been
used to show that ERP activity during the P3 can be character-
ized by two primary TF components: theta (3—7 Hz) and delta
(0-3 Hz) (Basar-Eroglu, Basar, Demiralp, & Schurmann, 1992;
Bernat, Malone, Williams, Patrick, & Iacono, 2007; Demiralp,
Ademoglu, Istefanopulos, Basar-Eroglu, & Basar, 2001; Jones et
al., 2006; Yordanova, Devrim, Kolev, Ademoglu, & Demiralp,
2000). Theta in the P3 window has been attributed to frontal
neural generators, and has been considered to index focused at-
tention and memory encoding processes (Basar-Eroglu et al.,
1992; Klimesch, 1999; Yordanova et al., 2000). P3-related delta,
which tends to be parietally maximal, has been considered
to index signal matching, decision-making, and memory updat-
ing (Basar-Eroglu et al., 1992; Karakas, Erzengin, & Basar,
2000).

From a signal processing perspective, TF approaches can
offer a complete representation of activity in averaged time-do-
main signals typically used to measure P3, and thus have the
potential to supplant current time-domain P3 measures and ad-
vance the utility of EEG/ERP data in this area. However, several
obstacles have hampered adoption of TF approaches as a general
replacement for standard time domain approaches to measuring
P3. First, most TF methods do not directly target condition av-
erage waveforms, the level of analysis used in the vast majority of
EEG/ERP studies of P3. Instead, applications have been more
focused on information not available in condition averages, to
make inferences about oscillatory dynamics in trial-level data or
high-frequency activity (e.g., gamma activity, 30-50 Hz). An-
other obstacle has been the wavelet TF transform, which is the
most widely used, but which lacks important properties such as
uniform TF resolution and accurate representation of the energy
in the signal. Particularly relevant is that wavelets do not gen-
erally provide good time support for activity at lower frequencies
(e.g., below 3 Hz), where a majority of energy is located in the
time region containing standard time-domain EEG/ERP com-
ponents such as the P3. Finally, because TF transforms add a
dimension to the signal representation (TF versus time or fre-
quency alone), the complexity and amount of data is greatly
increased, creating a need for new data reduction techniques. The
approaches taken in the current report address these problems by
utilizing more advanced TF representation algorithms (Cohen’s
class reduced interference distribution (RID: Cohen, 1995) as
opposed to wavelets), and implementing an effective TF data
reduction technique based on the widely understood statistical
technique of principal components analysis (Bernat, Williams, &
Gehring, 2005). For example, in recent work we presented ev-
idence that the time-frequency principal components analysis
(TF-PCA) approach can disentangle overlapping theta and delta
processes, and produce better measures of the relevant processes
in a feedback task typically indexed with time-domain feedback
related-negativity (FRN) and P3 components (Bernat, Nelson,
Holroyd, Gehring, & Patrick, 2008). In that report, the TF-PCA
approach revealed statistically independent theta and delta pro-
cesses, which were summed together in time-domain measures,
creating confounded FRN and P3 measures that contained mix-
tures of the processes indexed separately by the TF measures.
For all of these reasons, TF measures may provide a more op-
timal representation of the activity contained in the signals, and
thus components measured in this way may ultimately serve as
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more parsimonious endophenotypes for externalizing than P3-
AR.

Indeed, some recent efforts have shifted focus away from
time-domain P3 amplitude and toward TF measures of ERP
activity. Recent studies, for example, have revealed an associa-
tion between P3-related delta and theta and alcoholism. Power in
these frequency ranges was lower in adult alcoholics (Jones et al.,
2006) and in high-risk adolescent and adult offspring of alco-
holics (Kamarajan et al., 2006; Rangaswamy et al., 2007). Delta
and theta bands were also shown to provide unique information
to discriminate between alcoholic and control groups (Jones et
al., 2006). Further, significant associations between event-related
activity in these bands and genes implicated in alcohol depen-
dence and related disorders have been found. P3-related delta
and theta activity has been linked to CHRM2, a cholinergic
muscarinic receptor gene on chromosome 7 (Jones et al., 2004;
Porjesz & Rangaswamy, 2007). CHRM2 has been associated
with higher cognitive processing and 1Q (Comings et al., 2003;
Dick et al., 2007; Gosso et al., 2007), and has been implicated
in alcohol and drug dependence (Luo et al., 2005; Wang
et al., 2004), and, most recently, in externalizing disorders (Dick
etal., 2008). While there is yet no study of pleiotropic effects (i.e.,
shared genetic influences by CHRM2 on both alcoholism and
P3-related delta and theta activity), these findings demonstrate
the promise of event-related delta and theta as endophenotypes
of alcoholism. Left unanswered, however, is whether this prom-
ise extends to other disorders that compose the externalizing
psychopathology spectrum.

The present investigation is a direct extension of Iacono et al.
(2002), in which we demonstrated an association between P3-AR
and specific externalizing spectrum disorders (Iacono et al., 2002;
also see Patrick et al., 2006). The present study extends the P3
findings of Iacono et al. by using the same subjects to examine the
association between the TF components and P3 amplitude in
individuals diagnosed with any one of six disorders falling in this
spectrum. This is the first study employing the TF-PCA method
to examine these relationships, and to do so using a population-
based sample, thus allowing greater generalizability of the find-
ings. Probit regression was used to determine the abilities of P3
amplitude and each TF component’s amplitude to differentiate
adolescent males with an externalizing disorder from those with
no disorder. It was hypothesized that TF components would
show reduced amplitude in externalizing disorders compared to a
control group. Further, these components would be able to in-
dependently differentiate the two groups by accounting for
unique variance above and beyond that accounted for by P3
amplitude.

Methods

Subjects

Subjects were 506 male youths (228 twin pairs and 50 unmatched
twins; mean age = 17.5 years, SD = 0.4; range 16.6-8.3 years)
from the older cohort of the Minnesota Twin Family Study
(MTEYS), a longitudinal and epidemiological study investigating
the development of substance use disorders and related psycho-
pathology. Subjects were identified from birth records as twins
born between January 1, 1972 and December 31, 1978. A com-
prehensive description of the MTFS is found in Iacono and
McGue (2002). Consistent with demographics of the state of
Minnesota at the time the twins were born, nearly all (99%) were
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Caucasian. All subjects and their parents gave written informed
assent or consent as appropriate.

Diagnostic Assessment

Trained clinical interviewers administered structured in-person
interviews with the twins and their parents independently. Mem-
bers of each twin-pair were interviewed concurrently by separate
interviewers. Lifetime presence of substance abuse and conduct
disorders (as defined by the Diagnostic and Statistical Manual of
Mental Disorders, 3rd Edition, Revised; DSM-III-R) was as-
sessed via a revised version of the Diagnostic Interview for Chil-
dren and Adolescents (DICA; (Reich, 2000)) and an expanded
version of the Substance Abuse Module from the Composite
International Diagnostic Interview (Robins, Babor, & Cottler,
1987). Mothers reported on their twin sons through interviews
using the parent version of the DICA (Reich, 2000). A DSM-III-
R diagnosis was assigned on the basis of a consensus, “best-
estimate’ approach (Leckman, Sholomskas, Thompson, Belan-
ger, & Weissman, 1982) combining mother and son interview
data. A lifetime study diagnosis was given if either all DSM-III-R
symptom criteria were met (definite certainty level) or all criteria
but one were met (probable certainty level). Because a single
symptom 1is sufficient for a diagnosis of substance abuse, all
substance abuse cases were of definite certainty.

Psychophysiological Assessment

A rotated-heads visual oddball task (Begleiter et al., 1984) was
used. Subjects viewed 240 stimuli consisting of either an oval
(two-thirds of trials—‘standards”) or a superior view of a styl-
ized head (one-third of trials—“‘targets’), in which a nose and
one ear were depicted on the oval. Subjects were required to
respond to target trials by pressing a button on either the left or
right armrest of their chair, corresponding to the side of the head
on which the ear appeared. On half the target trials the nose
pointed up (such that the left ear appeared on the left side of the
screen; an easy discrimination), while on the other half of target
trials the head was rotated 180° so that the nose pointed down
(left ear appeared on the right side of the screen; a hard discrim-
ination). Stimulus duration was 98 ms, and the inter-trial inter-
val, during which subjects fixated on a dot in the center of the
screen, varied randomly between 1 and 2 seconds.

Electroencephalographic (EEG) data acquisition. A Grass
(Grass Technologies, West Warwick, RI) model 12A Neurodata
Acquisition System recorded EEG and electrooculographic
(EOG) data at a sampling rate of 256 Hz and filtered from
0.01-30 Hz (6 dB/octave rolloff). EEG, referenced to linked
earlobes, was recorded from three parietal electrodes: on the
midline at Pz, and over left and right hemispheres at P3 and P4,
respectively. EOG was recorded using a pair of biopotential
electrodes arranged in a transverse montage, one electrode placed
superior to the eye and the other at the outer canthus. Imped-
ances were kept below 5 kQ for EEG and below 10 kQ for EOG.
Trials consisted of 2 s of data, including a 500-ms prestimulus
baseline. Target trials were repeated if the subject failed to re-
spond or the analog-to-digital converter’s limits were exceeded.
Two standard trials were presented before each repeated target
trial to maintain a constant proportion of target and standard
trials. Trials repeated more than twice were excluded from
averaging.

EEG data processing and reduction. Blinks and other ocular
artifacts were corrected using the method of Gratton, Coles, and
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Donchin (1983). Trials with activity > 100 pV were excluded
from further processing. Averaged target waveforms were con-
structed separately for the easy and hard target conditions at
each electrode site. P3 amplitude was defined as the point
between 280 and 600 ms at which amplitude of the average
waveform was maximal. Although there are different ways to
capture P3 amplitude, we adopted this peak-in-window ap-
proach because a survey of studies exploring P3-AR’s relation-
ship to externalizing spectrum disorders showed this to be the
method of choice (Bauer & Hesselbrock, 2003; Brigham, Hern-
ing, & Moss, 1995; Chen et al., 2007; Enoch, White, Waheed, &
Goldman, 2008; Hill, Locke, & Steinhauer, 1999; Hill, Muka,
Steinhauer, & Locke, 1995; Iacono et al., 2002; Jones et al., 2006;
Kim, Kim, & Kwon, 2001; Maurage et al., 2007; O’Connor,
Bauer, Tasman, & Hesselbrock, 1994; Polich & Ochoa, 2004;
Prabhu et al., 2001; Rangaswamy et al., 2007; Reese & Polich,
2003). Thus, our aim was to determine what TF analysis adds to
the information yield derived from studies that have successfully
identified P3-AR when measured this way.

P3 amplitude was highly correlated between the three sites
(r =0.87 for Pz-P3 and Pz-P4), as well as between the easy and
hard target conditions (r=0.89). Further, previous analyses
have shown that associations between P3 amplitude and the ex-
ternalizing factor do not differ as a function of these three elec-
trode sites (Hicks et al., 2007; Patrick et al., 2006). Therefore, to
simplify presentation, current analyses were performed on ERPs
only from the Pz electrode and averaged over easy/hard target
conditions.

Time-frequency PCA decomposition. The time-frequency
PCA decomposition (TF-PCA) method is detailed in Bernat et
al. (2005, also see Bernat et al., 2007). Here, the primary features
are outlined. The data handling and decomposition steps were
carried out in Matlab (version 6.5, Mathworks, Inc) using a
generalized set of scripts developed for this purpose.! All TF
transforms were computed using Cohen’s class RID transform.
TF transforms were created using the entire, baseline corrected
(— 500 to — 10 ms), 2 s epoch to allow for rejection of edge effects
from the transform. PCA was then performed on the resulting
TF surfaces to decompose the surfaces into TF components.
PCA applied to TF energy much resembles its application to
signals in the time or frequency domain. First, TF surfaces are
rearranged into vectors, recasting the TF energy into a matrix
with subjects in rows (or trials if one were performing trial-level
decomposition) and time-frequency energy points in columns.
Then, the covariance matrix is decomposed, varimax rotation is
applied to maximize simple structure, and the component vectors
are rearranged back into surfaces representing each TF-PCA
component’s matrix of rotated component loadings for each TF
point. The number of components to extract was determined by
inspecting the scree plot of singular values, representing the rel-
ative variance accounted for by each component, for a break or
elbow. Finally, each subject’s TF surface is weighted using the
extracted TF-PCA components. To weight the original TF data,
each time-frequency point is multiplied by the corresponding
point in the matrix of rotated loadings for each component. This
produces weighted data surfaces, for each subject for each TF-
PCA component, whose data points represent energy in units
weighted by the component loadings. For statistical analyses,
component scores representing the peak energy on the weighted

'Scripts available upon request.
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TF data surface (i.e., the time-frequency point with the highest
energy) was used. This method allowed comparison of analogous
measures from the TF (peak energy) and time (peak P3 ampli-
tude) domains.

Decompositions were performed using averaged data, which
enhanced brain activity that was consistently phase-locked to the
stimulus, while attenuating non-phase-locked (e.g., induced) ac-
tivity. This method provided the most direct parallel to the extant
body of research on P3, thus allowing greater comparability to
relevant P3 findings. Further, given our goal of exploring TF
components as potential endophenotypes for externalizing, we
sought to extend our previous findings by focusing current an-
alyses on the same group of subjects used in Iacono et al. (2002),
which characterized the relationship between P3-AR and exter-
nalizing disorders, and by utilizing the TF-PCA method of Ber-
nat et al. (2007), which characterized the TF components
associated with the P3 ERP. Therefore, to optimize the signal to
noise ratio and stability of the components in the PCA decom-
position, the TF-PCA was carried out using the 17-year-old
sample described in Bernat et al. (N = 2,068), which included the
subjects used in the current report, supplemented by the addition
of 17-year-olds whose data have more recently become available
(providing a total N = 2,084). Decompositions were performed
on a frequency range of 0—5.75 Hz and a time range from stim-
ulus onset (0 ms) to 1000 ms post-stimulus. Broader-range de-
compositions, which included frequencies through the upper
range of alpha (0-12 Hz) were also performed; however, TF
transforms of the averaged data predictably yielded no compo-
nents in the upper frequency range. The present range was cho-
sen, then, to achieve the best resolution decomposition of
the frequency range within which there was activity of interest.
Figure 1 shows the TF components for the group of 506 subjects
in the current report, weighted by the PCA-derived component
loadings from the larger sample (also see Results section for a
more detailed description of the TF-PCA components).

Statistical Analysis
To investigate the relationship between P3 amplitude, each TF
component, and externalizing disorders, subjects were divided
into diagnostic groups based on their clinical diagnoses at study
intake. Diagnostic groups were: conduct disorder (CD;
N =184), attention-deficit/hyperactivity disorder (ADHD;
N = 45), oppositional defiant disorder (ODD; N = 87), nicotine
dependence (ND; N = 68), alcohol abuse/dependence (AAD;
N = 95), and illicit drug abuse/dependence (DAD; N = 35; which
included amphetamines, cannabis, cocaine, hallucinogens, in-
halants, opioids, PCP, and sedatives). Group assignment was
made without consideration of possible comorbid diagnoses,
producing representative samples of individuals with each diag-
nosis. A control group was also formed, composed of those 71
subjects who were free of any psychiatric disorders and free of
paternal risk for substance use disorders (i.e., their father and his
first-degree male relatives had no history of serious substance
abuse problems, determined by structured interviews with sub-
jects’ fathers and mothers using the Substance Abuse Module,
and a composite interview from the Family History-Research
Diagnostic Criteria (Andreasen, Endicott, Spitzer, & Winokur,
1977) and Family Informant Schedule and Criteria (Mannuzza,
Fyer, Endicott, & Klein, 1985)).

Probit regression was then used to test the hypothesis that
each TF component would uniquely and independently discrim-
inate between those subjects with an externalizing disorder and
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those with no disorder, above and beyond P3 amplitude’s ability
to do so. Probit regression is analogous to logistic regression
(Amemiya, 1981) and thus is suitable for dichotomous outcome
variables. We used a robust weighted least squares estimator in
Mplus (ver. 4.2; Muthén & Muthén, 2007), which facilitated
accounting for the non-independence of the twin-pairs’ obser-
vations in our sample, using Mplus’s method for deriving stan-
dard errors that are appropriately adjusted when data are nested
in groups as with twin pairs. Two approaches were employed.
First, univariate regression models, in which P3 peak amplitude
and each TF component’s peak energy amplitude were entered
into separate models, were used to determine the components’
individual relationships to each externalizing disorder. Second,
bivariate regression models, in which P3 and each TF component
were entered into the model together (i.e., a model including P3
and TF component 1, a model including P3 and TF component
2, etc.), were used to determine the ability of each TF component
to uniquely discriminate diagnostic group membership in the
presence of P3 (i.e., account for significant variance above and
beyond that accounted for by P3). The significance of each
univariate model was tested using a Z-score, derived from the
ratio of the probit regression coefficient for each independent
variable to its standard error. A chi-square difference test (df = 1)
was used to test for a significant difference between correspond-
ing univariate and bivariate models (e.g., univariate model with
TF component 1 only vs. bivariate model with P3 and TF com-
ponent 1 together). A significant difference indicated that the
univariate model did not adequately fit the data compared to the
bivariate model, thus indicating that the added variable was ac-
counting for a significant amount of variance. If the difference
was not significant, the fit of the univariate model was deemed
adequate, and it was concluded that the added variable was not
accounting for any additional variance.

Results

Behavioral Performance

Reaction time and response accuracy (number of correct hits)
measures were available for 494 of the subjects. T-tests revealed
that none of the diagnostic groups differed significantly from the
control group on reaction time in response to targets (all
t<1.79). Due to the non-normal distribution of the response
accuracy data (overall hit rate out of 80: M =78.64 hits,
SD = 1.90, median = 79.00), Mann-Whitney U tests were used
to test for differences between the control group and each diag-
nostic group. With one exception, response accuracy did not
significantly differentiate the control group from any diagnostic
group. The only exception was the ADHD group, which aver-
aged one fewer hit (M = 78.07, SD = 1.97, median = 79.00) than
the control group (M =79.09, SD =0.94, median = 79.00)
(U =989.50, z=2.94, p<.01). Given the results of no signifi-
cant effects between groups for reaction time and little effect for
response accuracy, these variables were not considered further.

P3 Latency

Since diagnostic group membership was not mutually exclusive
(i.e., because comorbid diagnoses were allowed, the same person
can appear in more than one diagnostic group), each group’s P3
latency was compared to the control group in separate z-tests. No
diagnostic group’s P3 latency significantly differed from that of
controls (all <0.66; see bottom of Table 1 for P3 latencies of
each group).
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Figure 1. Time-frequency components for the group of 506 subjects in the
current report, weighted by the PCA-derived component loadings from
the larger sample (see Methods for a detailed description). Grand-
averaged time (ERP) and time-frequency (Avg) plots are presented at the
top. ERPs (from — 150 ms to 1000 ms; stimulus onset at 0 ms) are
presented separately for each diagnostic group. The five time-frequency
components (PCs 1-5) retained from the principal components analysis
decomposition are presented below the grand averages. For all time-
frequency plots, x-axis is time from stimulus onset (0 ms) to 1000 ms, and
y-axes range from 0-5.75 Hz. Components are numbered (1-5: highest to
lowest) based on the amount of variance for which they account in the
varimax-rotated solution. Scree plot contains singular values (units not
relevant) for the largest 30 components, depicting the relative variance
accounted for by each component.

Time-Frequency PCA Decomposition

Based on the scree plot, five principal components, accounting
for 77.3% of the variance, were retained (see Figure 1). Com-
ponents are ordered based on the amount of variance for which
they account (highest to lowest) in the varimax-rotated solution.
Principal Component 1 (PC1), with peak energy centered be-
tween 2 and 2.5 Hz, contains activity at the front edge of P3.
Component 2 (PC2) contains activity around 1.5 Hz and is clos-
est in time to the peak of P3. Component 3 (PC3; centered
around 1 Hz) is a low-frequency delta component spanning the
time-range of the P2-N2-P3 ERP complex. Component 4 (PC4)
is the longest duration, lowest frequency component (centered
between 0.5 and 1 Hz), and is consistent with the slow-wave after
the P3. Finally, Component 5 (PCS5) contains activity centered
around 2.5 Hz, similar to Component 1; however, it occurs
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slightly earlier, beginning nearer in time to the N2 and lasting up
to the peak of P3.

Table 1 shows mean peak amplitudes for P3 and each TF
component for each diagnostic group. Multiple regression re-
vealed that these TF components collectively account for nearly
all of the variance in peak P3 amplitude (R?>=0.91;
F(5,500) = 983.51, p<.001). Additionally, each component
had significant zero-order correlations with P3 and with each
other (see Table 2).2 These results suggest that these PCA-derived
TF components characterize brain activity in a complementary,
yet more detailed, way than time-domain ERP measures.

Probit Regression

Univariate models. Table 3 summarizes results of the univ-
ariate analyses, showing the Z-score and portion of variance ex-
plained by each component for each diagnostic group
(represented by McKelvey & Zavoina’s pseudo-R?, the measure
of probit regression model performance that most closely ap-
proximates ordinary least squares regression’s measure of ex-
plained variance, R% (Hagle & Mitchell, 1992; Veall &
Zimmerman, 1994)). Results show that, with few exceptions,
each component successfully discriminated diagnostic from con-
trol groups. The exceptions, however, were only marginally non-
significant with p-values <0.1 (in ADHD and DAD: p =0.06
for PC4, p = 0.07 for PCS5; p = 0.1 for P3 in ADHD). In all cases,
significant discriminative ability was based on reduced ampli-
tudes in the diagnostic group compared to the control group.

Results further suggest that each TF component performed at
least as well as P3 in differentiating many of the diagnostic
groups from controls. Inspection of Table 3 shows that the
amount of variance in group membership explained by each TF
component was equal to or exceeded that of P3 in most cases.
Pseudo-R? was greater in magnitude for TF components (max-
imum, 0.27; median, 0.15) than for P3 amplitude (maximum,
0.15; median, 0.11) in 26 out of 30 comparisons. Notably, PCs 2,
3, and 4, the delta frequency components, consistently accounted
for greater portions of variance than did P3.

Bivariate models. Table 4 summarizes results of chi-square
difference tests comparing the corresponding univariate and bi-
variate models. In all cases, combining the TF component and P3
into the model offered improved ability to discriminate diagnos-
tic from control groups, as demonstrated by positive chi-square
differences between the univariate and bivariate models. In most
cases, however, this improved group discrimination was not sig-
nificant, indicating that the addition of the second variable into
the model offered no significant additional discriminative value
over the univariate model. Further, neither the TF component
nor P3 was a better discriminator; neither accounted for signifi-
cant additional variance in the presence of the other. These re-
sults were not surprising given the high correlations between P3
and the TF components.

21t is a common misconception that orthogonal components are nec-
essarily uncorrelated (after rotation). In fact, it is not possible to preserve
both orthogonality and independence (in the sense of uncorrelatedness)
of components following rotation (Jolliffe, 1995). Lack of correlation
among components can be preserved, but at the expense of loss of or-
thogonality. We instead opt for a normalization constraint (Kaiser’s) that
scales the loadings vectors to unit length (rather than the components)
and preserves orthogonality (thus increasing interpretability) while re-
laxing the requirement of lack of correlation.
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Table 1. Mean (SD) Peak Amplitudes for P3 (WV') and Each TF Component ( PCs 1-5; Weighted Energy Units) and Latency (ms) of P3

for Each Diagnostic Group

Control (N=71) CD(N=184) ADHD(N=45) ODDN=87) ND({N=68) AAD(N=95 DAD (N=35)
P3 28.4 (9.5) 24.6 (1.7) 25.3(6.3) 23.4(7.0) 23.4(6.3) 23.2(6.5) 24.2(1.7)
PCI1 38.7 (26.7) 30.1 (20.4) 27.4 (16.5) 26.8 (15.7) 25.3 (12.0) 25.5(13.7) 25.8 (13.5)
PC2 63.3 (44.7) 44.8 (28.8) 44.7 (23.6) 40.9 (24.7) 41.0 (19.7) 38.9 (18.8) 43.6 (24.7)
PC3 63.9 (42.7) 45.8 (28.7) 44.6 (25.4) 39.9 (24.0) 39.2 (19.6) 39.4 (21.2) 43.2 (24.7)
PC4 457 (34.1) 31.7(21.3) 33.1 (18.5) 29.1 (19.5) 29.3 (16.5) 28.3 (16.2) 33.2(21.4)
PCS5 33.1 (21.8) 26.0 (17.9) 24.8 (15.6) 22.8 (13.3) 21.7(11.3) 21.9 (12.4) 232 (12.4)
P3 Latency 453.1 (47.6) 448.4 (58.4) 455.6 (60.1) 447.6 (56.8) 448.1 (53.2) 4483 (58.7) 460.1 (60.5)

Note: CD = conduct disorder; ADHD = attention deficit/hyperactivity disorder; ODD = oppositional defiant disorder; ND = nicotine dependence;

AAD = alcohol abuse/dependence; DAD = illicit drug abuse/dependence.

PC3 represented a notable exception to this trend. Despite its
large correlation with P3, PC3 remained a significant determi-
nant of group membership, across all externalizing diagnostic
groups, when added to the model with P3. The chi-square differ-
ence was significant in all cases except the DAD group (p = 0.13).
Although this effect was not quite significant, PC3 showed the
strongest effect of all the TF components in differentiating the
small sample of DAD cases from controls. Further, P3’s con-
tribution to group discrimination became non-significant when
added to the model with PC3 for all diagnostic groups but
ADHD. For ADHD, both PC3 and P3 amplitude made signifi-
cant contributions, as the PC3+P3 bivariate model fit signifi-
cantly better than either univariate model alone. In addition to
PC3, PC2 was also able to significantly determine group mem-
bership in the presence of P3 for the ADHD and AAD groups.

The similarity of results across diagnostic groups suggested
that the profiles of TF activity are similar for these different
facets of externalizing psychopathology. Similar TF profiles
across groups supports previous findings (e.g., Krueger et al.,
2002) of an externalizing factor underlying these disorders. As
illustrated in the profile plot of energy amplitudes for each group
(Figure 2), all diagnostic groups show comparable TF compo-
nent profiles, with similarly reduced component amplitudes
compared to the control group. To assess statistically whether
amplitude of the TF components might be related to external-
izing psychopathology, regardless of the specific diagnosis, we fit
a common factor model to the (log-transformed) number of
symptoms of each disorder. For drug dependence, we took the
maximum number of symptoms of any of the eight classes of
illicit substances. We included either PC2 or PC3 (given the sig-
nificant results of the bivariate regression analyses) and allowed
the component score to correlate with the common factor rep-
resenting the shared variance among symptom counts of all dis-
orders. Further, the variance unique to each disorder was
allowed to correlate with each component, one at a time, to see if

Table 2. Correlations ( Pearson’s r) Among P3 Peak Amplitude
and Each TF Component’s Peak Energy Amplitude, Collapsed
Across Groups

P3 PCl PC2 PC3 PC4
PC1 0.78
PC2 0.90 0.84
PC3 0.94 0.83 0.90
PC4 0.87 0.65 0.92 0.85
PCs 0.75 0.90 0.73 0.85 0.60

Note: p < .001 for all correlations.

any such correlations were significant. For both PC2 and PC3,
the correlation with the common factor was approximately
r = — .20 and was highly significant, indicating that those higher
in externalizing tendencies had smaller component scores. Cor-
relations with the common factor were larger than the zero-order
correlations with any of the symptom counts. Significant neg-
ative correlations between disorder-unique variance and the TF
component would indicate that the component was associated
with additional variance in the disorder not accounted for by
what the disorder shares with the common factor. This was not
the case for any of the disorders.

Further Examination of the Relationship between TF-PCA and
Time-Domain Measures

The results described above demonstrate that there is an advan-
tage to characterizing the ERP signal in terms of its constituent
TF components. P3-related delta activity, within particular time
and frequency ranges, successfully differentiated those subjects
with an externalizing spectrum disorder from those free of any
disorder, above and beyond P3 peak amplitude’s ability to do so.
P3 peak amplitude, however, while being the measure used in all
the externalizing/substance use disorder studies we surveyed,
may be more affected by noise and higher frequency activity than
other measures (e.g., area or average amplitude). Therefore, to
more comprehensively examine the relationship between exter-
nalizing, P3, and its TF components (PC3 specifically, given its
unique relationship across externalizing spectrum disorders), we
also performed follow-up analyses using additional time-domain
measures.

P3 mean amplitude. A measure less commonly used to quan-
tify P3 amplitude, but that may capture more P3 variance than
does the peak, is to take the mean within some latency window.
Therefore, we performed follow-up analyses using the mean am-
plitude within a latency window that was centered on each in-
dividual subject’s peak P3 amplitude. A 40 ms window was
chosen to capture more P3 variance than does the peak, while
excluding potential influence from earlier or later ERP activity.
In the univariate probit regression model, mean P3 amplitude
accounted for slightly more variance in group membership than
did peak P3 amplitude for all diagnostic groups except DAD, for
which it accounted for slightly less variance (differences between
pseudo-R? for P3 peak and P3 mean were all .01 or less; see Table
3). In the bivariate model with TF component PC3, results using
mean P3 closely agreed with those using peak P3: PC3 still ac-
counted for significant variance above and beyond that ac-
counted for by P3 across diagnostic groups (again, not quite
significant for DAD; see Table 4).
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Table 3. Univariate Probit Regression Results of Each Component for Each Diagnostic Group
CD ADHD ODD ND AAD DAD

z R’ z R? z R’ z R’ z R’ z R’
P3 2.78%* 0.07 1.60 0.06 3.20%%* 0.14 2.85%* 0.15 3.40%%* 0.15 1.99* 0.09
PC1 2.24* 0.05 2.11% 0.12 2.68%* 0.13 2.60%* 0.20 3.05%* 0.17 2.01* 0.18
PC2 3.08%* 0.09 2.12% 0.14 3.34% 0.18 2.83%* 0.23 3.45% 0.27 2.17* 0.15
PC3 3.24%%* 0.09 2.34% 0.13 3.60%** 0.20 2.94%* 0.25 3.48%w* 0.22 2.13* 0.15
PC4 3.07** 0.09 1.79 0.11 3.34% 0.17 2.74% 0.20 3.42% 0.22 1.76 0.09
PCs 2.32% 0.04 1.88 0.08 2.71% 0.13 2.64% 0.18 2.99%* 0.15 1.85 0.12
P3 (mean) 2.78%* 0.07 1.69 0.06 3.24 0.14 2.89% 0.15 3.46% 0.16 2.03* 0.08
PC3-TD 2.88%* 0.07 2.09* 0.10 3.33w 0.17 2.80%* 0.21 3,32 0.19 1.80 0.11

Note: df =1 for all tests; R?> = McKelvey & Zavoina’s pseudo-R?; P3(mean) = mean amplitude within a 40 ms window centered on the peak of P3;
PC3-TD = mean amplitude in time-domain within the time range spanned by PC3.

#p < .05, %p < .01, #p < 001,

Mean ERP amplitude within the time range defined by TF-
PC3. We additionally sought to demonstrate that the informa-
tion contained in the TF-PCA components is the same as that
contained in the condition average ERP time-domain mea-
sures—but characterized in a more optimal way. To this end, we
extracted a new time-domain measure based on the TF-PCA
optimized time window spanned by PC3 (given PC3’s unique

Table 4. Results of Chi-Square Difference Tests Comparing the
Corresponding Univariate and Bivariate Probit Regression Models
for Each Diagnostic Group®

Components tested CD ADHD ODD ND AAD DAD
PC1+P3

P3 2.57  0.06 2.23 0.44 1.18 0.01

PC1 0.02 2.5 0.50 1.37 1.23 1.75
PC2+P3

P3 0.17 2.44 0.01 0.03 1.46 0.14

PC2 2.81 5.69%  1.67 1.95 597 1.10
PC3+P3

P3 0.86 4.10* 1.51 294 222 0.97

PC3 4.58%  8.08%  6.46% 7.01** 6.63** 2.30
PC4+P3

P3 0.03 0.25 0.17  0.19  0.01 0.65

PC4 232 1.58 096 085 233 0.01
PC5+P3

P3 292 0.09 2.07 093 1.64 0.35

PC5 0.03 1.00 0.93 1.87 1.44 1.36
PC3+P3(mean)

P3(mean) 0.74  2.63 .02  2.15 1.22 1.16

PC3 . 431%  591*%  541% 594% 499* 2.53
PCs+PC3-TD*

PC3-TD 8.76% 1.22 362 249 458 2.84

PCs 6.47% 1.03 2.18 1.68 3.61 2.55
PC3+PC3-TD

PC3-TD 0.15 0.11 0.05 0.23 0.01 0.34

PC3 4.54% 355 8.39%F 7.08%* 8.45% 294

Note: df =1 for all tests, except *df =2; P3(mean) = mean amplitude
within a 40-ms window centered on the peak of P3; PCs = peak energies
of PCs 1, 3, & 5, collectively; PC3-TD = mean amplitude in time-domain
within the time range spanned by PC3.

*p < .05, %p < .01.

A significant result indicates that component accounted for a significant
amount of variance in the bivariate model, beyond that accounted for by
the other component. A non-significant result indicates that component
added no significant discriminative information above that contained in
the univariate model.

association across externalizing groups). Probit regression ana-
lyses were performed for each diagnostic group comparing the
activity in the time and TF domains residing within a time win-
dow defined by the time range spanned by PC3. As seen in Figure
1, the activity in PC3 lasts from 140—500 ms, spanning an interval
containing the P2-N2-P3 ERP complex in the time domain and
TF-PCA components 1, 3, and 5 in the TF domain. In the first
set of analyses, the ability of the mean time-domain ERP am-
plitude within this time range to differentiate each diagnostic
group from controls was compared to the ability of a model
containing the peak energies, collectively, of the TF-PCA com-
ponents that occurred within this same time range to do so (i.e.,
probit regression models containing either the time domain mean
or PC 1, 3, and 5 peak energies were compared to a model
containing all four of these measures). Thus, the collective
time-domain information occurring in this time window was
compared to the collective TF information occurring in this same
window. First, this mean ERP measure alone accounted for
slightly more variance in group membership than the traditional
P3 peak amplitude, but less variance than did TF PC3 (see Table
3). Second, results show (see Table 4) that neither the mean ERP
measure nor the group of TF-PCs within that time range ac-
counted for any unique variance in group membership above and
beyond the other (except the CD group, in which both measures
accounted for the same, and some additional, variance). Thus,
the same variance in group membership is accounted for by ac-
tivity in both the time-domain and TF-PCA components residing
in the time range defined by PC3.
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Figure 2. Profile plot of peak energy amplitudes for each time-frequency
component (PCs 1-5) for each diagnostic group.
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A second set of analyses was performed to demonstrate the
optimization of information gain gotten from the TF-PCA
method. To this end, the discriminative ability of the mean ERP
amplitude within this time range (spanned by TF-PC3) was
compared to that of the mean energy of PC3 within the same time
range, thus comparing analogous measures in the time and TF
domains. Again, across externalizing groups, PC3 accounted for
a significant amount of variance in group membership beyond
that accounted for by the mean ERP measure (just short of sig-
nificance for the ADHD and DAD groups, p =.059 and .086,
respectively; see Table 4).

In total, these follow-up analyses further demonstrated that
the TF-PCA method represents the averaged event-related activ-
ity in a more comprehensive and detailed manner than do typical
time-domain and TF analysis methods. Beyond delineating more
refined time windows in which to focus analytic efforts, TF-PCA
was able to parse the ERP signal into its constituent compo-
nents—components with a unique relationship to externalizing
spectrum disorders. In the present paper, the P3-related delta
activity represented by PC3 remained a significant determinant of
group membership when compared to a variety of measures,
supporting its role as a potential endophenotype for externalizing.

Discussion

The present study extended previous findings of an association
between P3-AR and externalizing psychopathology in a
population-based sample of adolescents by employing a novel,
data-driven time-frequency analysis method to decompose the
averaged ERP data in a new way. The extracted time-frequency
component measures accounted for almost all of the variance in
the time-domain P3 measures, demonstrating that the relevant
variance for measuring the P3-AR was well represented in the
decomposition. Next, these P3-related TF components were
shown to be associated with disinhibitory disorders in the exter-
nalizing spectrum. Further, delta activity in particular time
ranges was associated with externalizing disorders above and
beyond the association between these disorders and P3 ampli-
tude, suggesting that these TF components may serve as more
parsimonious endophenotypes for externalizing than P3-AR.

A primary reason the TF measures outperformed the
time-domain P3 measure is that the time-region defined by the
TF-PCA approach was more sensitive to differences due to
externalizing. This stimulus-related activity was not apparent in
the time-domain alone, and current time-domain measurement
approaches offered no rational approach to selecting this win-
dow. In particular, approaches based on ranges of time or time-
frequency activity (i.e., time-windows or TF regions of interest)
are not data driven, and activity must be visually apparent or
defined « priori. The most widely used time-domain data driven
approach, PCA, generally produces separate measures for P2,
N2, and P3 (see, e.g., Chapman & McCrary, 1995; Dien et al.,
2003; Spencer, Dien, & Donchin, 1999, 2001), rather than span-
ning that time range like the TF-PC3 from the current decom-
position. The current results demonstrate that this new approach
to ERP decomposition can extract time- and frequency-specific
activity that is more sensitive to externalizing-related variance in
the ERP than P3 peak amplitude, and offers support for the idea
that TF-PCs from this approach may better represent processes
relevant to these psychopathologies.

C. S. Gilmore et al.

Of the five TF components extracted in the present study, two
delta components were able to independently discriminate group
membership, accounting for an increment in variance over that
accounted for by P3 amplitude: PC2 for the ADHD and alcohol
groups, PC3 across all diagnostic groups (just short of signifi-
cance for the small DAD group). Further, these two components
were associated with a common factor representing the shared
variance among symptom counts of all disorders. PC2 corre-
sponds closest in time to the P3b wave typically found in response
to targets in the oddball task. PC3 spans the time range of the P2-
N2-P3 ERP complex (and is significantly correlated with P2
amplitude, r = .53, p<.001, and the microvolt value associated
with the trough of the N2 wave, r =.39, p<.001). PC3, then,
may be most representative of the specific activity indexing signal
matching, decision-making, and salience detection processes
previously attributed to P3-related delta activity generally (Basar-
Eroglu et al., 1992; Karakas et al., 2000; Knyazev, 2007). These
cognitive processes have been implicated in ADHD, conduct
disorder, and substance use disorders (Dom, De Wilde, Hulstijn,
van den Brink, & Sabbe, 2006; Garon, Moore, & Wasch-busch,
2006; Kim, Lee, & Kim, 2006), further supporting the relation-
ship between this delta component and externalizing.

Present results suggest that abnormalities in these two delta
components, particularly PC3 with its unique relationship across
disorders, may play an important role in the association between
P3-AR and externalizing psychopathology. Previous findings
have shown reduced power in P3-related delta activity to be as-
sociated with alcoholism and risk of developing alcoholism
(Jones et al., 2006; Kamarajan et al., 2006, Rangaswamy et al.,
2007). Further, some research has suggested that the activity
revealed by time-frequency analyses may be closer to gene func-
tion than are clinical and cognitive measures (Begleiter & Porjesz,
2006). Thus, the aforementioned associations between P3-related
delta and theta, alcohol and drug use disorders, and the CHRM?2
gene (Dick et al., 2008; Jones et al., 2004; Luo et al., 2005;
Porjesz & Rangaswamy, 2007; Wang et al., 2004) suggest a ge-
netic component potentially relevant to the etiology of substance
use disorders and externalizing psychopathology—a genetic
component closely linked to the P3-related TF components
found in the present study.

While the present study’s focus was on the relationship be-
tween P3-related activity and externalizing disorders, an impor-
tant next step in the characterization of these components as
endophenotypes is to investigate their heritability and association
with familial risk for externalizing disorders. P3 amplitude has
been shown to be strongly heritable (van Beijsterveldt & van Baal,
2002; Yoon, Iacono, Malone, & McGue, 2006), and the relation-
ship between P3 and externalizing can be accounted for by shared
genetic effects (Hicks et al., 2007). Future studies will utilize our
large twin sample to extend these findings to the TF-PCA derived
components associated with the P3 ERP. Given that topographic
differences may also play a role in the relationship between P3, TF
components, and externalizing (e.g., theta contributions to P3
tend to be frontally maximal, while delta contributions tend to be
parietally maximal; (e.g., Basar-Eroglu et al., 1992; Jones et al.,
20006)), future work will assess a broader range of electrode sites to
capture any topographically mediated variance.

The present results demonstrated that activity indexed by the
P3 can be more optimally represented by multiple overlapping
TF components. Further, these components accounted for ex-
ternalizing-related variance including and beyond what is in-
dexed by P3. These findings suggest that these TF measures may
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be more sensitive to variance related to these disorders, and
contributes to the growing suggestion that TF representations of
EEG/ERP may produce more optimal indices of underlying neuro-
physiological processes. Specifically, the measured delta activity
during the early stages and peak of P3 (i.e., PC3) was the most
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sensitive index. Given findings of links between delta (and theta)
and genes related to alcoholism and externalizing spectrum disor-
ders (Dick et al., 2008; Porjesz et al., 2005), this delta activity may
serve as a more parsimonious endophenotype for externalizing
psychopathology than P3-AR itself.
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