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Abstract

IMPORTANCE Mild traumatic brain injury (TBI) may predispose individuals to progressive
neurodegeneration.

OBJECTIVE To identify evidence of neurodegeneration through longitudinal evaluation of changes
in retinal layer thickness using optical coherence tomography in veterans with a history of mild TBI.
DESIGN, SETTING, AND PARTICIPANTS This longitudinal cohort study evaluated veterans who
were receiving services at the Minneapolis Veterans Affairs Health Care System. Symptomatic or mild
TBI was diagnosed according to the Mayo TBI Severity Classification System. Participants in the
age-matched control group had no history of TBI. Participants with any history or evidence of retinal
or optic nerve disease that could affect retinal thickness were excluded. Data analysis was performed
from July 2019 to February 2020.

EXPOSURES The presence and severity of mild TBI were determined through consensus review of
self-report responses during the Minnesota Blast Exposure Screening Tool semistructured interview.

MAIN OUTCOMES AND MEASURES Change over time of retinal nerve fiber layer (RNFL) thickness.
RESULTS A total of 139 veterans (117 men [84%]; mean [SD] age, 49.9 [11.1] years) were included in
the study, 69 in the TBI group and 70 in the control group. Veterans with mild TBI showed
significantly greater RNFL thinning compared with controls (mean [SE] RNFL slope, -1.47[0.24]
pm/y vs =0.31[0.32] um/y; Fy 5, = 8.42; P = .004; Cohen d = 0.52). Functionally, veterans with mild
TBI showed greater declines in visual field mean deviation (mean [SE] slope, -0.09 [0.14] dB/y vs
0.46[0.23]1dB/y: Fy;,, = 4.08; P = .046; Cohen d = 0.36) and pattern standard deviation (mean [SE]
slope, 0.09[0.06] dB/y vs -0.10 [0.07] dB/y; F; 5, = 4.78; P = .03; Cohen d = 0.39) and high spatial
frequency (12 cycles/degree) contrast sensitivity compared with controls. Cognitively, there was a
significantly greater decrease in the number of errors over time during the Groton Maze Learning
Test (GMLT) in controls compared with veterans with mild TBI (mean [SE] slope, -9.30 [1.48] errors/y
vs -5.23 [1.24] errors/y; Fy;,, = 4.43; P = .04; Cohen d = 0.37). RNFL tissue loss was significantly
correlated with both worsening performance on the GMLT over time (Spearman p = -0.20; P = .03)
and mild TBI severity (Spearman p = -0.25; P = .006). The more severe the mild TBI (larger
Minnesota Blast Exposure Screening Tool severity score), the faster the reduction in RNFL thickness
(ie, the more negative the slope) across time.

CONCLUSIONS AND RELEVANCE This cohort study found longitudinal evidence for significant,
progressive neural degeneration over time in veterans with mild TBI, as indicated by greater RNFL
tissue loss in patients with mild TBI vs controls, as well as measures of function. These results suggest
that these longitudinal measures may be useful biomarkers of neurodegeneration. Changes in this
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head injury?

Findings In this longitudinal cohort
study of 139 veterans with and without
a history of mild traumatic brain injury,
mild traumatic brain injury was
associated with significantly greater
thinning of the retinal nerve fiber layer
over time.

Meaning These findings suggest that
structural neural loss in the visual
system, as evidenced by thinning of the
retinal nerve fiber layer, may be a useful
biomarker of neurodegeneration
following chronic mild traumatic

brain injury.

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

(continued)
[S Open Access. This is an open access article distributed under the terms of the CC-BY License.
JAMA Network Open. 2020;3(12):e2030824. doi:10.1001/jamanetworkopen.2020.30824 December 22,2020 1/13
jamanetwork/2020/jno/12_22_2020/z0i200964 PAGE: 1 SESS: 21 OUTPUT: Nov 25 7:51 2020


https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.30824&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.30824

JAMA Network Open | Neurology Optical Coherence Tomography and Longitudinal Neurodegeneration in Veterans With Chronic Mild TBI

Abstract (continued)

biomarker may provide early detection of subsequent cognitive and functional deficits that may
impact veterans' independence and need for care.

JAMA Network Open. 2020;3(12):e2030824. doi:10.1001/jamanetworkopen.2020.30824

Introduction

Although traumatic brain injury (TBI) has long been considered a static event, it is better classified as
a chronic disease process.' Those with a history of TBI, including mild TBI, are at greater risk for
neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, and chronic traumatic
encephalopathy, the last of which may occur after repetitive mild TBI or a single moderate-to-severe
TBL™> It is suspected that mild TBI may initiate a process of persistent neuroinflammation and long-
term gray and white matter atrophy, leading to progressive neural degeneration over time. Several
large studies have shown an association between a history of TBI and an increased risk of Alzheimer
disease and Parkinson disease,®® even in individuals with no known cognitive impairments

after TBI.°

These findings raise important questions about the long-term consequences of mild TBI, even
in the absence of dysfunction following acute injury. Biomarkers may predate the development of
cognitive and functional deficits by many years.'® Longitudinal studies can provide critical
information on the temporal arc between the earliest biomarker changes and the subsequent
cognitive and functional deficits impacting independence and quality of life.

Optical coherence tomography (OCT) is a noninvasive imaging technology used in
ophthalmology to easily and rapidly examine and quantify the layers of the retina with high
resolution (at the micrometer level), accuracy, and reproducibility."? The association of OCT
measures of retinal layer thinning with the degree of central nervous system (CNS)
neurodegeneration has been well-established in disorders such as Alzheimer disease, Parkinson
disease, and multiple sclerosis.™2° OCT has been used to detect neurodegeneration in preclinical
models of TBI?"23 and in a few human studies,>*2® but longitudinal studies have been lacking. The
current study aimed to identify evidence of neurodegeneration through longitudinal evaluation of
structural and functional changes in the visual nervous system and CNS in veterans with a history of
mild TBI.

Methods

Participants

The study was approved by the Minneapolis VA Health Care System institutional review board.
Written informed consent was obtained from all participants. This study follows the Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Participants were veterans receiving services in the Minneapolis VA Health Care System. The
diagnosis of mild TBI was based on the Mayo TBI Severity Classification System.2® Any veteran with
existing retinal or optic nerve conditions that could alter the thickness of the retinal nerve fiber layer
(RNFL) over time were excluded. See the eAppendix, eFigure 1, eFigure 2, and eFigure 3 in the
Supplement for more information on participant recruitment, inclusion criteria, and study timeline.

Participants completed a clinical interview at their baseline visit that included the Mini-
International Neuropsychiatric Interview,3° Alcohol Use Disorders Identification Test,3' and the
Minnesota Blast Exposure Screening Tool (see the eAppendix in the Supplement for a description of
mild TBI determination and severity scoring, as well as characteristics of the mild TBI group).2 All
outcome measures were assessed at 3- to 6-month intervals.
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Optical Coherence Tomography

OCT imaging was performed in each eye without pupil dilation using the Spectralis OCT1 (Eye
Explorer software version 1.9; Heidelberg Engineering). The mean peripapillary RNFL thickness was
determined by the instrument segmentation software of the circular scan. The mean thickness of the
ganglion cell layer complex (GCL-IPL) in the central 8° was segmented from an elliptical volume
macular scan using the lowa Reference Algorithms (Retinal Image Analysis Lab; lowa Institute for
Biomedical Imaging) (eAppendix in the Supplement). RNFL and GCL-IPL complex thickness values
were assessed over time for the right eye, left eye, and averaged across right and left eyes for each
time point, per participant (eAppendix in the Supplement).

Visual Function Measures

Visual Acuity

Best-corrected, high-contrast (100% contrast), distant equivalent visual acuity was measured in each
eye using the Functional Vision Analyzer system (Stereo Optical Co Inc). The outcome acuity score
was the number of letters read correctly on an internally projected chart (eg, a change in 5

letters = 0.1logMAR change in acuity).

Contrast Sensitivity

Contrast was a threshold measure for detecting the orientation of sinusoidal gratings at the lowest
contrast at 5 spatial frequencies: 1.5, 3, 6, 12, and 18 cycles per degree, using the aforementioned
Functional Vision Analyzer and as detailed in the eAppendix in the Supplement. For each spatial
frequency, 9 sine-wave gratings in 0.15 log contrast sensitivity decrements were presented (eg, a
negative slope of 2 units/y in contrast sensitivity score would mean that there was a loss of 0.3 log
contrast sensitivity).

Visual Field

Automated visual field sensitivity in each eye was tested with the Humphrey Frequency Doubling
Perimeter (Zeiss Meditec), using a 10-2 threshold program to assess the central 10° (eAppendix in the
Supplement).?3 The 2 outcome measures were the decibel mean deviation (a center-weighted mean
of all of the locations tested) from the age-matched normative database (negative values are worse
than age-matched normal eyes), and pattern standard deviation, a decibel measure of regional
asymmetry (higher values represent more focal loss, and lower values represent either no loss or
diffuse loss).

Cognitive Measures
Cognitive ability was measured using 5 standard tests from the CogState battery (CogState Lt
Detection, a test of psychomotor processing speed; Identification, an attentional test; One-Back

)34:

Task, which assesses working memory; One Card Learning, which assesses short-term visual learning
and memory; and Groton Maze Learning Test (GMLT), which measures executive function using a
maze learning paradigm. See the eAppendix in the Supplement for more details.

Statistical Analysis

Longitudinal Changes of Outcome Measures

A linear regression model, using the Im() function in R statistical software version 3.6 (R Project for
Statistical Computing), was used to estimate the intercept and slope for outcome measures over time
on those participants who had 3 or more time points of data. The Cook distance method of
identifying outliers was used (eAppendix in the Supplement).3® To compare changes in outcome
measures between the TBI and control groups, we used the slopes calculated from the linear model
as the dependent variable in a univariable analysis of variance after passing normality tests. An
alternative statistical mixed-effects model of change over time in outcome variables was also used to
analyze all observations over time in a single model.3® The model incorporates random variability for
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outcome-specific intercepts and slopes around the fixed-effects intercept and mean slopes of the
respective treatment groups (control and mild TBI). An advantage of this model is that it accounts for
the different number of measurements on each eye, whereas the previous analysis assumes equal
precision on all slope estimates. The model can be fit with the PROC MIXED function of SAS statistical
software version 9.4 (SAS Institute). Two-sided F tests with P < .05 were used to test for statistical
significance.

Correlation Between Changes in OCT Retinal Thickness and Functional Outcome Measures

The correlation between slope of OCT retinal layer thickness and the following outcome measures
was assessed using Spearman p correlation coefficient: mild TBI severity, time since most recent head
injury, visual function slopes, and CogState slopes. Data analysis was performed from July 2019 to
February 2020.

Results

A total of 139 veterans (117 men [84%]; mean [SD] age, 49.9 [11.1] years) were included in the study
(69 in the mild TBI group and 70 in the control group). The groups were similar with regard to age,
sex, education level, and prevalence of hypertension, diabetes, hazardous drinking or alcohol use
disorder, and posttraumatic stress disorder (Table 1). The median (range) time since injury was 17 (0.5-
59) years.

OCT Measures of Retinal Layer Thickness
There were a total of 124 participants (63 in the TBI group and 61in the control group) who met the
criteria for inclusion in the linear regression model calculation (ie, they had =3 time points of RNFL
data). Reasons for having fewer than 3 time points of data included missed visits, technical difficulties
with OCT equipment during a visit, and inability to collect usable data because of eye or other
participant issues during a visit.

The main outcome measure, RNFL change over time, showed significantly more thinning (loss
of axons) per year in the mild TBI group compared with controls (mean [SE] RNFL slope, -1.47 [0.24]
pm/y vs ~0.31[0.32] um/y; 5, = 8.42; P = .004; Cohen d effect size = 0.52) (Figure 1). The
mixed-effects model showed an even more significant result (difference in slope B, -1.80; P = .001)
(Table 2). Interestingly, the baseline RNFL thickness at enrollment showed a significantly thicker
mean (SE) RNFL for participants with mild TBI vs controls (98.4 [1.2] pm vs 93.8 [1.4] pm;
Fi135 = 6.25; P = .01; Cohen d = 0.43), which was also confirmed by the intercept estimate using the
mixed-effects linear model. There was no correlation between the time since TBI and the baseline
RNFL thickness. Unlike RNFL, the change in thickness of the ganglion cell layer complex
corresponding to the central 8° of vision was no different between controls and mild TBI groups.

Table 1. Characteristics of the Sample

el s, e, (6 Test statistic (x> or

Characteristic TBI (n = 69) Control(n=70) F) P value
Age, mean (SD), y 50.0(10.3) 49.9 (11.9) 0.0012 .97
Women 7(10.1) 15 (21.4) 3.32° .07
Education level, mean (SD)© 6.7 (1.8) 6.8(1.8) 0.127 .73
Hypertension 25 (36) 27 (39) 0.08° .78
Diabetes 13 (19) 12 (17) 0.07° .80
Hazardous drinking or alcohol use disorder 26 (38) 22 (31) 0.61° 44
Posttraumatic stress disorder 6 (9) 4(6) 0.46° .50
TBI severity score, mean (SD) 2.3(2.7) NA NA NA

Abbreviations: NA, not applicable; TBI, traumatic
brain injury.

2 F test was used for numeric variables.

b x2 test was used for categorical variables.

¢ Education level was coded as follows: 1 = less than 8
years, 2 = some high school, 3 = graduated high
school, 4 = general education diploma, 5 = work
toward associate's degree, 6 = completed associate’s
degree, 7 = work toward bachelor’s degree,

8 = completed bachelor’s degree or higher,
9 = other.
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Visual Function Measures

Table 2 shows the analysis of variance results for change over time (slope) of the visual function
measures: visual acuity, visual field mean deviation and pattern standard deviation, and contrast
sensitivity at 5 spatial frequencies. Change over time of visual acuity (letter score per year) did not
significantly differ between groups. Both visual field mean deviation and pattern standard deviation
significantly differed between groups when both eyes were averaged together. The TBI group had

a significantly more negative slope for mean deviation (mean [SE], -0.09 [0.14] dB/y vs 0.46 [0.23]
dBly; Fy15, = 4.08; P = .046; Cohen d = 0.36) and a significantly more positive slope for pattern
standard deviation (mean [SE], 0.09 [0.06] dB/y vs -0.10 [0.07] dB/y; F;,, = 4.78; P = .03; Cohen
d = 0.39) compared with the control group, both of which indicate worsening visual field thresholds
over time in the TBI group (eFigure 4 and eFigure 5 in the Supplement). To account for multiple
comparisons in the contrast sensitivity data, we chose to control the false discovery rate (eAppendix
in the Supplement). Contrast sensitivity testing showed significant changes over time in the right
eye at the lowest spatial frequency of 1.5 cycles/degree (F; ;55 = 7.73; P = .006; Cohen d = 0.50) and
in the left eye (F; ;55 = 5.15; P = .02; Cohen d = 0.41) and both eyes combined (F; 53 = 5.70; P = .02;
Cohen d = 0.43) at the 12 cycles per degree spatial frequency (eFigure 6 in the Supplement).

Figure 1. Mean Slope of Averaged Eyes Retinal Nerve Fiber Layer (RNFL) Thickness and Trajectories of Mean RNFL Thickness Over Time for Individual Participants
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Table 2. Visual Structure and Function Slope Measures in TBI and Control Subjects: Analysis of Variance and Mixed-Effects Model Results

Slope, mean (SE) Mixed-effects model
Difference in slope,
Variable TBI Controls F P value Cohend 2o P value
OCT retinal nerve fiber thickness, pm/y (n = 63
TBI; n = 61 controls)
Averaged eyes -1.47 (0.24) -0.31(0.32) 8.42 .004¢ 0.52 -1.80 .001¢
oD -1.55(0.27) -0.01 (0.36) 11.77 <.001°¢ 0.62 -1.50 .001¢
0S -1.16 (0.33) -0.29 (0.52) 2.01 .16 0.26 -0.81 .02¢
OCT ganglion cell layer complex, pm/y (n = 63
TBI; n = 66 controls)
Averaged eyes -0.17 (0.07) -0.02 (0.09) 2.00 .16 0.25 0.08 .51
oD -0.20(0.08) -0.11(0.10) 0.46 .49 0.12 -0.08 .58
0S -0.19 (0.06) 0.01(0.10) 2.76 .10 0.29 -0.19 .16
Visual acuity in change, No. of letters correct per
y (n =60 TBI; n = 62 controls)?
Averaged eyes -0.71(0.41) 0.36 (0.45) 3.08 .08 0.32 Not analyzed
oD -0.98 (0.50) -0.10 (0.60) 1.25 .27 0.20 -1.50 .26
0S -0.42 (0.48) 0.80(0.53) 2.93 .09 0.31 -1.16 .05
Visual field mean deviation, dB/y (n = 60 TBI;
n = 64 controls)
Averaged eyes -0.09 (0.14) 0.46 (0.23) 4.08 .046¢ 0.36 Not analyzed
oD -0.004 (0.18) 0.26 (0.26) 0.71 .40 0.15 -0.19 .46
0s -0.14 (0.14) 0.66 (0.23) 8.43 .004¢ 0.52 -0.52 .03¢
Visual field pattern standard deviation, dB/y
(n =60 TBI; n = 64 controls)
Averaged eyes 0.09 (0.06) -0.10(0.07) 478 .03¢ 0.39 Not analyzed
oD 0.06 (0.07) -0.14 (0.08) 3.23 .07 0.32 0.12 .15
0S 0.11(0.07) -0.07 (0.07) 3.33 .07 0.33 0.11 11
Contrast sensitivity (2 units/y = 0.3 log unit change) (n = 63 TBI; n = 62 controls)¢
1.5 cpd
Averaged eyes -1.91(0.99) 0.20(0.91) 2.48 12 0.28 Not analyzed
oD -2.04 (1.03) 2.01(1.03) 7.73 .006° 0.50 -3.14 .008¢
0S -1.48(1.22) -2.39(1.37) 0.25 .62 0.09 0.56 .70
3 cpd
Averaged eyes 0.44 (1.22) 0.31(1.77) 0.003 .95 0.01 Not analyzed
oD 1.61(1.75) 1.69 (1.82) 0.001 .97 0.01 -1.55 42
0S -0.51(1.26) -0.81(2.54) 0.01 .92 0.02 -0.53 .78
6 cpd
Averaged eyes -0.73(1.82) 2.15(2.06) 1.11 .29 0.19 Not analyzed
oD -1.08(2.17) 2.74(2.55) 1.31 .25 0.20 -3.86 13
0sS 0.23(2.20) 1.73 (2.40) 0.21 .65 0.08 -2.19 .37
12 cpd
Averaged eyes -1.51(0.93) 1.49 (0.84) 5.70 .02¢ 0.43 Not analyzed
oD -1.51(1.10) 1.33(1.04) 3.50 .06 0.33 -1.15 .39
0S -1.55 (1.01) 1.78 (1.06) 5.15 .02¢ 0.41 -1.26 .30
18 cpd
Averaged eyes -0.30(0.52) 0.41 (0.44) 1.08 .30 0.19 Not analyzed
oD -0.62 (0.81) 0.23(0.54) 0.76 .39 0.16 0.008 .99
0S 0.02 (0.56) 0.37 (0.54) 0.21 .65 0.08 0.23 .69
Abbreviations: cpd, cycles per degree; OCT, optical coherence tomography: OD, oculus < Denotes statistical significance.

dexter (right eye); OS, oculus sinister (left eye); TBI, traumatic brain injury. 9 For each spatial frequency, 9 sine-wave gratings in 0.15 log contrast sensitivity

2 Visual acuity is measured in number of letters correct; a change in 5 letters = 0.1 decrements were presented (eg, a negative slope of 2/y would mean that there was a
logMAR acuity and 1line of letters on an EDTRS chart. For example, a slope of 1letter loss of 0.3 log contrast sensitivity).
lost per year means that in 5 years, it would be expected that 1line of letters would be
lost (eg, 20/25 worsening to 20/30 visual acuity).
® The test of B = 0 assesses whether the mean slopes are the same in the mixed-effects
model. Change is defined as the difference from control. If change is negative, TBI
slope is less than control slope.
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CogState Measures

There were a total of 130 participants (64 in the TBI group and 66 in the control group) who met the
criteria for inclusion in the linear regression model calculation (ie, they had =3 time points of data)
for the CogState tasks. Because 5 tasks were administered, we controlled for the false discovery rate
using the same method as for the contrast sensitivity measures. Table 3 shows that, of all of the
CogState measures, only reduction in total errors committed during the GMLT over time was
significantly worse in the mild TBI group compared with the control group (mean [SE] slope, -5.23
[1.24] errors/y vs -9.30 [1.48] errors/y; F, 15, = 4.43; P = .04; Cohen d = 0.37) (eFigure 7 in the
Supplement).

Correlation Between Changes in OCT Retinal Thickness and Functional Outcome
Measures

Spearman p correlations showed that although it was not significantly correlated with time since
injury in the TBI group (mean [SE] time since injury, 20.1[1.8] years; Spearman p = 0.13; P = .32),
RNFL slope was significantly correlated with mild TBI severity across the whole sample (Spearman
p =-0.25; P = .006) (eFigure 8 in the Supplement). The more severe the mild TBI (larger Minnesota
Blast Exposure Screening Tool derived severity score), the faster the reduction in RNFL thickness (ie,
the more negative the slope) across time.

RNFL thickness change over time (slope) was also significantly correlated with slope of total
errors during the GMLT (Spearman p = -0.20; P = .03) (Figure 2). A greater reduction in errors made
over time in the GMLT (greater negative slope) was associated with less reduction in RNFL thickness
over time (smaller negative slope, or positive slope). No variables were significantly correlated with
GCL-IPL change over time.

Table 3. CogState Cognitive Task Slope Measures Analysis of Variance Results

Slope, mean (SE)

Task TBI (n = 64) Controls (n = 66) F P value Cohend
Detection 0.01(0.03) 0.03(0.03) 0.26 .61 0.09
Identification -0.0003 (0.03) 0.02 (0.01) 0.44 .51 0.12
One Card Learning 0.00003 (0.006) 0.0007 (0.007) 0.01 .94 0.01
One Back Task 0.00006 (0.004) 0.001 (0.007) 0.03 .87 0.03
Groton Maze Learning Test -5.23(1.24) -9.30(1.48) 4.43 .042 0.37

Figure 2. Scatter Plot Showing Significant Correlation Between Averaged Eyes Retinal Nerve Fiber Layer (RNFL)
Thickness Change Over Time and Change Over Time in Total Errors During the Groton Maze Learning Test
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Abbreviation: TBI, traumatic brain injury.

@ Denotes statistical significance.
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Discussion

This study found a significant reduction in retinal axons over time as a biomarker of progressive
neurodegeneration in veterans with chronic mild TBI. We also found evidence for progressive loss of
visual function (contrast and visual field sensitivity) and CNS function (lack of improvement of error
score on the GMLT) in participants with mild TBI. Furthermore, faster RNFL thinning correlated with
greater severity of mild TBI and less improvement in cognitive performance over time in the GMLT.
Thinning of RNFL as a sign of neurodegeneration is not a new concept. Examples have been
reported in patients with Alzheimer disease, pre-Alzheimer disease with cognitive impairment,”

Parkinson disease, 3832

cognitive impairment,® and multiple sclerosis, including patients who have
never had an episode of optic neuritis.*® OCT studies in rodent models of TBI have shown thinning of
the RNFL in a blast model,?' blast combined with a genetic model of Alzheimer disease,?2and in a
concussive model.Z® Reports of a thinner RNFL after head trauma have also been published in 3
human studies.?*26 These results demonstrate that change in retinal layer thickness as measured
with OCT is a sensitive and precise biomarker of loss of neurons, but, as of yet, is nonspecific for
differentiating neurological disorders. It is, however, an easily administered and sensitive tool to
facilitate detection and monitoring of neurodegeneration.

In this study, we found evidence for both decreases and increases in RNFL over time in the
control and mild TBI groups. Although the mild TBI group showed a greater negative slope (thinning
over time), there were individual participants in both groups with positive slopes over time. This was
unexpected because axonal layer thickness is thought to be stable or, in the case of progressive
neural degeneration, decreases over time. Although measurement variability of thickness can occur
as a result of factors influencing segmentation of the retinal layers, such as signal strength or
neighboring blood vessels, such factors would not explain a systematic trend of increases in
thickness over time. The RNFL is not static; it contains axons and glial cells. Axon volume may be
influenced by the characteristics of axoplasmic flow and status of the axon, 361> which, in turn, may
cause dynamic changes in the thickness of this layer. Changes in glial cells, including Mueller cells in
the inner retina, could also explain an increase in RFNL over time due to gliosis. Future investigation is
warranted to better understand the reason why some eyes show an increase in axon layer thickness
over time.

We also found that the mild TBI group had a thicker RNFL at the time of enrollment compared
with age-matched control veterans. Differences in axoplasmic flow, gliosis, and axial eye length are
plausible explanations. We also found no significant correlation between time elapsed from TBI and
baseline RNFL thickness or slope. Although there was no correlation, it is notable that our sample
had a wide range of times since injury (median [range], 17 [0.5-59] years) and that some of the study
patients were showing signs of chronic neurodegeneration years after their TBI event. This would
argue for a nonlinear process of neural degeneration that does not necessarily start at the time of TBI
and could be a result of neuroinflammation, the time course of which has not yet been clearly
elucidated. Future analyses and studies will investigate this time course.

Although RNFL showed significantly greater thinning over time in mild TBI with a medium effect
size, there was not a corresponding difference in thinning of the GCL-IPL over time. Ganglion cells
are concentrated in the macula; their density and multilayer organization in the central 8°in the
macula provide sufficient dynamic range (40-100 pm) to detect thinning by OCT. Lack of progressive
thinning of the GCL-IPL in the macula would suggest relative sparing of progressive
neurodegeneration in the central 8° visual field, which may explain why these patients did not
appreciate subjective changes in visual function over time. Currently, OCT is not precise enough to
segment and detect significant changes in the GCL-IPL outside of the macula where the soma are
only 1layer thick, offering little dynamic range of thickness. The reduction in the mean peripapillary
RNFL thickness over 360° implies diffuse damage, corresponding mainly to the peripheral visual
field.*® Further regional analysis of the RNFL is planned, which may elucidate whether certain axon
bundles are more susceptible to neurodegeneration, similar to glaucoma.
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The greater RNFL thinning we found in the mild TBI group may be due to retrograde

degeneration, including trans-synaptic retrograde degeneration*”48

resulting from damage to the
postgeniculate visual radiations or visual cortex?®; however, we cannot ascertain whether the initial
damage was at the pregeniculate or postgeniculate location (or both) at this time. We are planning to
quantify the spatial pattern of white and gray matter changes over time from magnetic resonance
imaging studies on these cohorts to determine whether the RNFL thinning precedes or follows
thinning of corresponding visual radiations and visual cortex in order to provide evidence for trans-
synaptic anterograde vs retrograde degeneration in the CNS underlying post-TBI neurodegeneration.

The results of visual and cognitive functional tests also showed evidence for progressive loss,
but to a lesser degree than structural loss, and only in some of the behavioral functions tested. Some
behavioral measures of visual and cognitive function may be more sensitive to neurodegeneration
than others (eg, low contrast acuity vs high contrast acuity*®) or may lag behind structural measures,
and trends may not be significantly different from normal variations over the duration of this study.
In glaucoma, which is the most common neurodegeneration of the retina and optic nerve, it is
common to find evidence for structural loss of inner retinal thickness before corresponding
functional deficits can be detected.>® The same holds true for the cognitive tests. Simpler tests of
reaction time and attention did not differ between groups over time, but a significant difference was
found in the GMLT, a cognitive test of spatial working memory and error monitoring that is sensitive
to longitudinal changes in cognitive ability.”" Improvement of the task over time was associated with
less thinning in RNFL over time, suggesting that retinal axons could be used as a surrogate for loss
of neurons in the CNS affecting executive function, warranting further study.

Limitations

Some limitations must be considered when interpreting these results. First, the diagnosis of mild TBI
relied on self-report of the incident and symptoms surrounding the head injuries. Findings have
shown evidence for variable success in recall of head injury events, with better recall if there was less
time between the event and time of recall, greater injury severity, and greater significance of the
event to the individual or their family.5>>3 |deally, medical records could be used to corroborate head
injury events; however, records review is not always possible or satisfactory, and many TBI events,
particularly mild ones, were not treated medically. We opted for a comprehensive interview to assess
TBI history, which has been shown to elicit superior recall compared with questionnaires.>* Second,
the current study focused on mild TBI, and, although mild TBI is the most prevalent form of TBI,
longitudinal studies of patients with moderate-to-severe TBI may better reveal the association of TBI
with neurodegeneration over time. Furthermore, although we did not adjust for multiple tests across
the various measurement domains, the results are consistent and demonstrate different
manifestations of the same pathological process.

Conclusions

The findings of this cohort study provide evidence for progressive neurodegeneration and functional
loss over time in veterans with mild TBI. We found greater thinning of the RNFL in the retina in the
mild TBI group compared with control veterans. We also found evidence of greater decline in
functional measures of vision (visual field and contrast sensitivity) and cognition (GMLT) in mild TBI,
with cognitive decline being associated with the RNFL thinning. These findings fit with theoretical
models of the chronic effects of neurotrauma,'® with structural biomarkers showing abnormality first
followed by functional abnormalities. Taken together, these findings suggest that the precision of
OCT can be applied to identify individuals showing thinning of the axon layer of the inner retina as a
marker for progressive neurodegeneration after mild TBI. Early identification of patients with
neurodegeneration may provide a strategy for personalized medicine in which treatments that
mitigate the consequences of neurodegeneration, including drugs and neuromodulation, could be
instituted at a time that may preserve function.
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